PRODUCT TECHNICAL GUIDE

UPS and Critical Power Solutions

When **energy** matters

CONTENTS

	MASTERYS BC+		
	MASTERYS BC+		
Uninterruptible Power Supply			33
(UPS)	MASTERYS BC+		53
	DELPHYS BC		63
	MASTERYS GP4	10 to 40 kVA/kW	73
	MASTERYS GP4 RK		87
	MASTERYS GP4		99
	DELPHYS GP	160 to 1000 kVA/kW 1	
	DELPHYS MP elite+	80 to 200 kVA 1	23
	MASTERYS IP+	10 to 80 kVA 1	33
	DELPHYS MX	250 to 900 kVA 1	45
	DELPHYS XL	1 to 4 and 1.2 to 4.8 MW 1	55
	MODULYS XS	2.5 to 20 kVA/kW 1	165
	MODULYS GP	25 to 200 kVA/kW 1	183
	MODULYS RM GP	up to 4 x 25 kVA/kW 1	197
	MODULYS XM	50 to 250 + 50 kW 2	217
	MODULYS XM	100 to 600 + 50 kW 2	229
	MODULYS XL	200 to 4800 kVA/kW 2	241
	CPSS Emergency	2 to 200 kVA 2	253
Static Transfer	STATYS XS	16 to 32 A 2	269
Systems (STS)	STATYS	32 to 1800 A 2	273
(010)			
Glossary	Glossary	2	281

SOCOMEC retains the full and exclusive ownership rights over this document. Only a personal right to utilise the document for the application indicated by SOCOMEC is granted to the recipient of such document. Any reproduction, modification or dissemination of this document, whether in part or whole, and in any way is prohibited, except upon Socomec's express prior written consent.

This document is not a specification. SOCOMEC reserves the right to make any changes to data without prior notice.

INDEX

1. POWER QUALITY ISSUES AND SOLUTIONS	9
 1.1. Power interruptions and voltage dips	9 10 10
2. ELECTRICAL POWER AVAILABILITY	12
2.1. Definition	
2.2. Availability of parallel or series systems	
2.3. Importance of topology	
3. STATIC UNINTERRUPTIBLE POWER SUPPLY (UPS) SYSTEMS	
3.1. Definition	
3.2. Types	
3.2.1. Passive Standby	
3.2.2. Line-Interactive	
3.2.4. Classification in accordance with EN 62040-3 3.3. Double conversion UPS functional modules	
3.3.1. Rectifier	
3.3.3. Battery charger	
3.3.4. Inverter	
3.3.5. Transformers	
3.3.6. Automatic bypass.	
3.3.7. Maintenance bypass	
3.3.8. Storage systems.	
3.4. Backfeed protection	
3.5. UPS sizing	
3.6. Temperature control in the place of installation	
3.7. Central power supply systems (CPSS)	
3.8. Generator sizing	
3.9. Protection devices	
3.9.1. Definitions	21
3.9.2. Selecting and co-ordinating devices to protect against overloads and short-circuits	21
3.9.3. Selecting and sizing differential breakers	22
3.9.4. Overvoltage protection devices	22
3.10. Maintenance	22
3.11. Directives and Standards	23
3.11.1.Directives	23
3.11.2.Safety Standards	23
3.11.3.Electromagnetic Compatibility Standards	
3.11.4.Performance	
3.11.5.Other standards	23

4. STATIC TRANSFER SYSTEMS (STS) 24
4.1. Definition
4.2. Performance (IEC 62310-3 definition) 24
4.3. STS usage examples
4.4. Functional modules
4.4.1. SCR modules
4.4.2. Power supply module
4.4.3. Control
4.4.4. Maintenance bypass
4.5. Backfeed protection
4.6. Selecting a STS
4.7. Protection devices
4.7.1. Selecting and coordinating thermal-magnetic breakers
4.7.2. Selecting and sizing differential breakers
4.8. Maintenance
4.9. Directives and Standards
5. COMMUNICATION
5.1. Protocols
5.2. Physical supports
5.3. Remote services
6. TOTAL COST OF OWNERSHIP (TCO)
6.1. Definition
6.2. Impact of UPS or STS systems on the TCO
6.2.1. THDi and cosφ input
6.2.2. Footprint
6.2.3. Performance
6.2.4. Front access and ventilation
6.2.5. Ease of use
6.2.6. Communication systems
7. ENVIRONMENTAL COMPATIBILITY
7.1. RoHS and WEEE directives
7.2. Performance
8. DIRECT ENERGY IMPACT
9. IMPACT ON AIR CONDITIONING

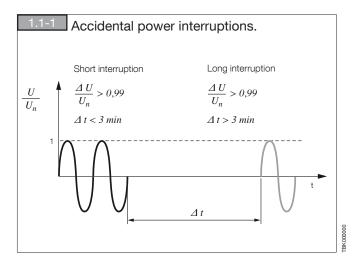
1. POWER QUALITY ISSUES AND SOLUTIONS

It goes without saying that in order for power to be used by the load, it must be present. A less obvious concept is that the power must have characteristics that make it ideal for use, e.g. it must fall within the tolerances permitted by the electric load or utility.

The concept of Power Quality (PQ) is, therefore, the set of limits which make energy useable and, consequently, the branch of study which defines assessment criteria and methods of measurement, in addition to analysing causes and proposing solutions.

The concept of PQ is not absolute, but always depends on the energy load. For example, in general terms, it can be stated that IT equipment has more stringent PQ requirements than a motor for industrial applications. Normally, PQ requirements and the measures for achieving them, depend on techno-economical considerations and compromises.

Loads, in addition to being sensitive to poor-quality power, are often also the cause of power quality issues. The diffusion of nonlinear loads (typically electronic equipment) and the connection of large utilities on weak lines are just some of the many causes. Another cause is atmospheric phenomena.

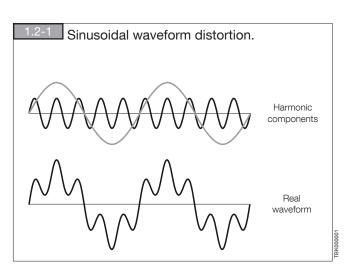

The most common disturbances that adversely affect the operation of a component or an electrical utility are:

- power sags or outages due to network faults
- short voltage variations due to the connection of heavy loads or the presence of faults in the network
- distortion of currents and voltages due to non-linear loads present in the system or in the systems of other utilities, etc.
- flicker due to large intermittent loads
- asymmetry in the supply voltage system

1.1. Power interruptions and voltage dips

All elements in an electrical system are sensitive, in different ways, to power dips or interruptions.

Long interruptions are the result of permanent faults which occur in public distribution networks or within the user's system. The duration may vary from a few minutes to several hours in the most critical cases. By contrast, micro-interruptions are linked to faults which occur in the distributor's networks and normally last for less than a second.


1.2. Voltage and current distortions

Waveform distortions are mainly caused by non-linear loads which, even if powered using sinusoidal voltages, draw highly distorted currents.

Typical non-linear loads include:

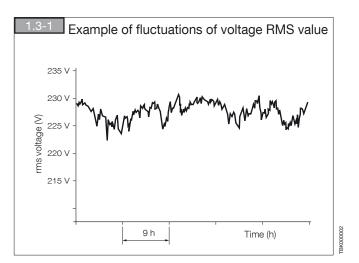
- devices which perform AC/DC and DC/AC conversions (present in all electronic power supplies, for example computers)
- fluorescent lamps
- electric soldering irons
- arc furnaces (also responsible for flicker)
- electrical drives

Any periodic waveform can be represented through Fourier series analysis by a fundamental sinewave and by sinusoidal components of varying amplitude and with multiple frequencies, known as harmonics (Figure 1.2-1).

Harmonic currents circulating in the network cause voltage drops of the same order of magnitude and depending on the line impedance, with resulting voltage distortion.

This means that the magnitude of the disturbance caused at each point of the system (both the user and at the point of delivery) depends not only on the characteristics of the load, but also on the characteristics of the plant itself. All electrical components are affected by waveform distortion.

Harmonic distortion is also known as THD (total harmonic distortion).

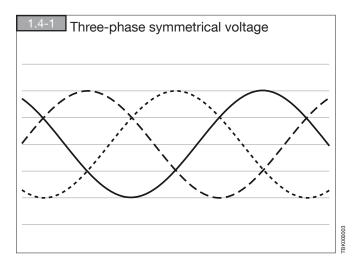

The negative consequences of harmonics generally include thermal overloading and sometimes dielectric problems (which can occur in power-factor correction batteries, for example).

Harmonics typically increase the risk of overheating in system components or nuisance trips.

1.3. Flicker

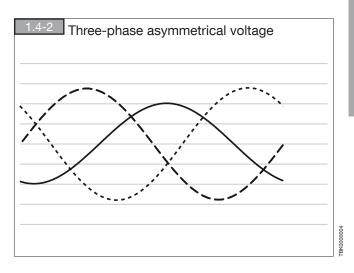
The connection and disconnection of loads in an electrical system generate rapid and repetitive voltage variations. In particular, certain types of consumers such as arc furnaces and soldering irons draw current in an irregular and variable manner during their operating cycle, giving rise to *flicker*.

Loads which are most sensitive to voltage fluctuations are incandescent lamps, as the flicker produced by variations in light flow can cause irritation to those who use them.

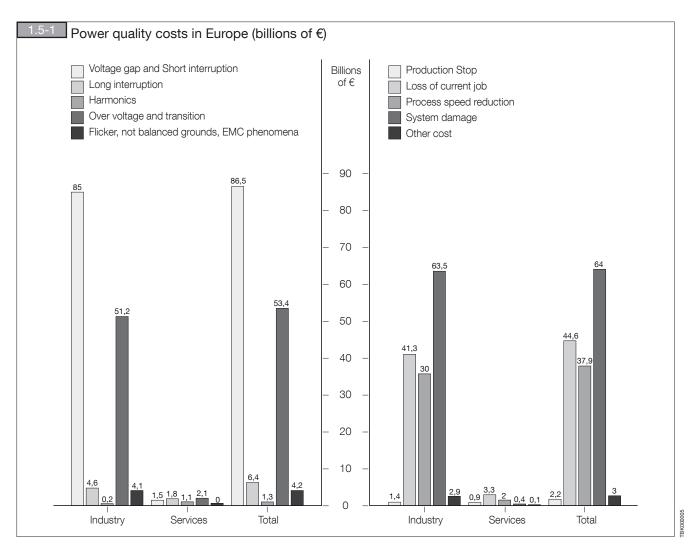


1.4. Voltage asymmetry

There are two main causes for asymmetry in the supply voltage system, with the first one being most prevalent:


- Presence of highly unbalanced loads supplied from the same line. This includes high-power single-phase loads which in certain cases may also be intermittent (e.g. high-power single-phase soldering irons). The severity of this phenomenon increases in proportion to the degree of load imbalance and the impedance of the power supply line (length, diameter). The worst affected loads are those located near to or downstream of the unbalanced load.
- Asymmetrical impedance of the power line. This problem is significant in the case of long backbone lines with no transpositions between the conductors along the route.

Asymmetrical voltage can create problems especially in rotating synchronous and asynchronous machines such as, for example, overheating windings, reduced starting torque and vibrations.



In general, even the nominal power of the transformers and the cable ratings are reduced in the case of significant asymmetry. In fact, the operating limit of these components is determined by the effective value of the total current which, in the case of imbalance, also consists of non-direct sequence currents. This fact must also be taken into account when adjusting the trip thresholds of protection devices which are sensitive to the total current.

1.5. Costs of poor-quality power

The following estimated costs of poor power quality are provided for indication purposes (source: LPQI).

The system setup

2. ELECTRICAL POWER AVAILABILITY

2.1. Definition

The general concept of availability (A) refers to the length of time that a system is able to perform its intended function.

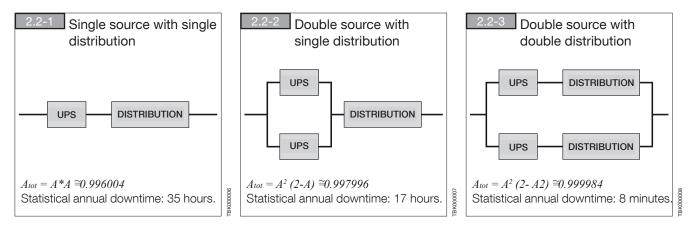
Normally, availability is indicated as a value per unit or as a percentage of the system's total lifespan.

Electrical power availability refers to the length of time a load is supplied with high-quality power. More intuitively, it is the length of time the power distribution system performs its intended function without interruptions due to breakdown or [routine] maintenance. In information technology terms, this concept is known as 'uptime' and is the opposite of downtime, e.g. periods when a system is unavailable. The mathematical definition of availability is:

$$A = \frac{MTBF}{MTBF + MTTR} = I - \frac{MTTR}{MTBF + MTTR} \cong I - \frac{MTTR}{MTBF}$$

All parameters involved are statistical and describe:

- MTBF: mean time between failure;
- MTTR: mean time to repair.


The approximation derives from the fact that, due to the intrinsic characteristics of standard-compliant power supply systems, MTTR is at least two orders of magnitude less than MTBF.

Availability is always less than 1 or at 100% and is always expressed in nines (99.99..%)

It is self-evident that the availability of an electrical power supply depends on the availability of its constituent components: distribution network, transformers, lines or cables, protection devices, UPS, generator sets, etc.

2.2. Availability of parallel or series systems

Below are three examples for comparing availability based on the different topologies. For simplicity, the availability value of both the source and the load are the same and are equal to 0.998.

2.3. Importance of topology

Topology is fundamental. This is demonstrated not only by the previous example but by experience. Human error, fire and flooding are just some of the possible causes of physical damage to equipment. You can imagine the consequences of having two redundant UPS systems installed in the same equipment room or two distribution lines in the same channels or conduits: a vital and expensive redundancy system would be at serious risk due to physical causes.

In view of technical and economic considerations, it is advisable not only to ensure redundancy of the various systems, but also to physically separate them.

3.1. Definition

Uninterruptible power systems, perhaps more commonly known as UPS, primarily consist of an energy storage system in various forms, on the basis of which an initial classification can be made, and a system for converting this into power.

In a static UPS, energy is stored in an electrochemical form in either special storage batteries or in kinetic form, using flywheels, and reconverted into the desired form using static electronic converters.

In dynamic UPS systems, energy storage is exclusively in kinetic form, and uses a rotary generator for reconversion.

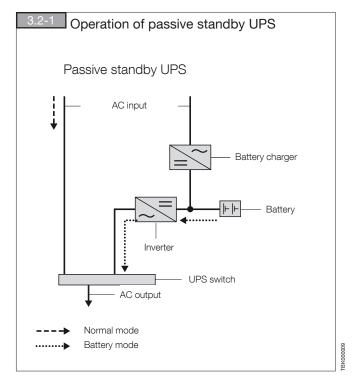
3.2. Types

The standard EN 62040-3 was developed in response to the need to classify the various types of static UPS systems currently available on the market. It distinguishes between three major product families, according to the internal schemes adopted:

- VFD passive standby;
- VI line-interactive;
- VFI double conversion.

3.2.1. Passive Standby

Utilities are normally powered by the mains supply. At the same time, the mains power supply also supplies the battery charger, which maintains the storage batteries at the maximum load level.


In the event of power loss, a solid-state or electromechanical commutator transfers the load to the inverter, which now activates, supported by the batteries. This mode of functioning continues until ordinary mains power conditions are restored or until the stored energy is exhausted.

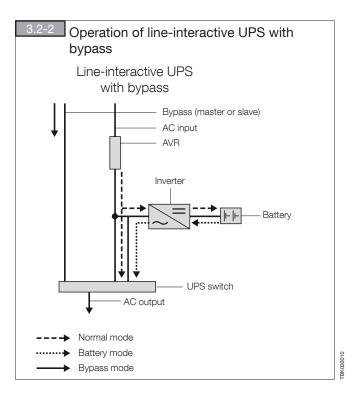
The merits of this solution are essentially in its simple design, which helps to contain the cost of the equipment.

Being the least expensive option, this type of UPS offers extremely limited performance, e.g:

- no decoupling between the upstream distribution system and the load;
- switching times of approximately 10 milliseconds, which are not always compatible with the loads needs;
- no system for regulating the output frequency;

Because of these disadvantages, UPS systems in this category are now used only for loads with low power ratings, typically up to 2kVA.

3.2.2. Line-Interactive


This configuration is characterised by the presence of a reversible AC/DC converter which can function both as an inverter and as a battery charger. In ordinary conditions, the load is supplied by the mains power supply through a solid-state breaker, which allows isolation of the system when the inverter is activated, preventing power from being fed back to the mains power supply. The voltage supplied to the load is conditioned by an AVR autotransformer (Automatic Voltage Regulator). In contrast to a passive-standby system, a line-interactive UPS system operates when mains power is available. Owing to its position in parallel with the ordinary power supply line, it guarantees a certain improvement in voltage quality, although this is limited to aspects such as magnitude fluctuations.

If the mains power is lost, the solid-state breaker is opened automatically, and the load is powered exclusively by the battery

- inverter unit, until ordinary conditions are restored or until the storage batteries are exhausted.

Compared to passive-standby systems, line-interactive UPS provide better waveform conditioning, but with some drawbacks:

- no decoupling between the upstream distribution system and the load;
- no system for regulating the output frequency;
- switching times of a few milliseconds (4-5 ms).

3.2.3. Double conversion

Unlike the configurations considered above, double-conversion UPS systems constitute true electric generators that are completely isolated - with few exceptions - from the mains network, in which power is supplied by the mains network itself. Since the power to the load is transformed solely by the UPS inverter, without any interaction with the mains network and regardless of whether the power originates from the mains supply or the battery, it is possible to fully exploit the versatility of the static converter, which is able to manipulate the voltage supplied to the load under any condition. In fact, based on the direct current supplied from other components of the UPS such as the rectifier or battery, the inverter control system ensures an output waveform which is totally independent of the input waveform, with an undistorted frequency and amplitude.

The advantages of this type of UPS system are numerous:

- isolation of loads from the upstream distribution network (thereby allowing for precise regulation of the output frequency)
- very wide input voltage tolerance
- instantaneous switching between mains power and battery (more a case of seamless transfer than switching)
- no-break transfer to bypass mode

The efficiency of double conversion UPS, typically 90-96%, is less than that of a *line-interactive* or *passive-standby* system, since the current supplied by the mains power is converted twice by a rectifier and an inverter, each of which are equipped with semiconductors (diodes, SCR, IGBT), which are prone to conduction and commutation losses. Nevertheless, the advantages of maximum-quality power obtained using a double-conversion system compensate for the losses which would otherwise occur on the cables and switches as a result of harmonics or other power quality issues. It is the recommended and most widely used technology for applications with a power rating of 5 kVA or higher.

3.2.4. Classification in accordance with EN 62040-3

In addition to the technology, the EN 62040-3 standard classifies UPS systems according to the output waveform and voltage drops, both in clearly defined switching conditions.

Standard EN 62040-3 table D.1 - Type of UPS, additional characteristics and system requirements

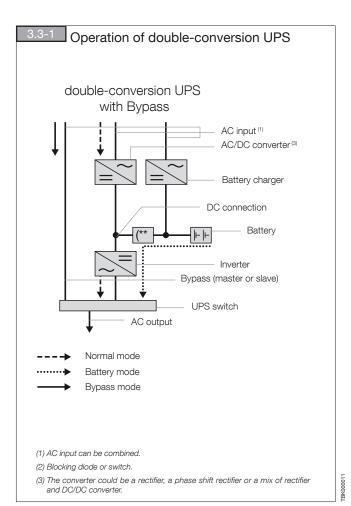
a) single

- b) multi-module
- c) bypass to primary power or backup power
- d) AC generator backup power system (if applicable)
- e) bypass transfer time (if applicable)
- f) galvanic separation between input and/or DC connection and/or output
- g) earthing of the input and/or DC connection and/or output
- h) bypass circuits for maintenance and other installation requirements, such as UPS disconnectors and connection switches
- i) compatibility with the existing power system (for example according to IEC 60364-4)
- j) remote shutdown or emergency power-off (EPO) device

3.3. Double conversion UPS functional modules

3.3.1. Rectifier

When mains power is available, the rectifier converts alternating voltage into direct voltage (AC/DC converter) to power the DC bus. Different types of rectifier are available according to the electronic components used, the topology and the control system.


The quality of the rectifier is determined by three parameters, namely:

- conversion efficiency;
- input frequency and voltage tolerances;
- input power factor
- generation of harmonics to the mains.

The most widespread types of rectifier and the typical harmonic content of three-phase current absorbed by the mains are:

- 6-pulse SCR: 32%
- 12-pulse SCR: 12%
- Boost: 27%
- Inverter: 4%

From the DC side, the battery charger is unable to supply perfect direct voltage due to residual ripple which causes premature ageing of the batteries.

3.3.2. DC bus

The DC bus is the part of the UPS power circuit in DC voltage.

A high-quality automatic bypass typically has a wide range of tolerable DC voltages: it therefore provides greater flexibility in the number of batteries based on the required back-up time.

3.3.3. Battery charger

The battery charger is the DC/DC converter which decouples the battery voltage from the DC bus voltage.

The advantage of this is twofold:

- the battery voltage is independent of the DC bus voltage;
- elimination of output ripple from the rectifier

3.3.4. Inverter

Converts direct current from the rectifier into sinewave current of perfectly stable magnitude and frequency. The inverter is therefore a DC/AC converter.

The quality of the rectifier is determined by three parameters, namely:

- conversion efficiency;
- ability to supply leading power factor loads;
- ability to withstand overloads and short-circuits;
- quality of the voltage waveform in the presence of distorting loads.

3.3.5. Transformers

The transformer is not an obligatory component and is the source of an informal classification which divides UPS systems into "*trafoless*" (transformer-less) and "trafo" systems It is necessary to determine whether the transformer is present as a functional component of the UPS system or whether its purpose is to manage the neutral.

In UPS units with a transformer on the inverter output, the output neutral, when available, is bonded to the bypass neutral downstream of the transformer, whereas in *trafoless* systems, the rectifier neutral and bypass neutral are common even inside the unit.

The insertion of a transformer on the static UPS line guarantees the galvanic isolation of the system and a single neutral system downstream of the UPS, in any operating condition.

In any case, it it important to bear in mind that the built-in UPS transformer does not permit the neutral state to be changed.

Advantages of trafo technology compared to trafoless technology:

- high short-circuit capacity, therefore greater flexibility in the choice of protection devices;
- no DC components in the output voltage.
- Disadvantages of trafo technology compared to trafoless technology:
- higher weight;
- larger footprint.

In any case, technical and economic factors should be considered on a case-by-case basis, making selection straightforward and unambiguous.

3.3.6. Automatic bypass

Switches the UPS output to the auxiliary network in the event of an overload or fault in the inverter module.

The network bypass circuit is formed by a SCR module and directly connects the network with the load.

The quality of the automatic bypass is mainly determined by its ability to withstand overloads and short-circuits.

In the case of separate input power supplies, it's common to use a *bypass input* or *back-up input* (to distinguish it from the *rectifier input*), an input which is dedicated exclusively to the *bypass* with the aim of minimising the probability of the *rectifier supply* and *bypass supply* failing at the same time. The *bypass supply* can be a different power line to that of the *inverter input* or generator. If there is no separation of the power supplies, this is referred to as a *common input*.

3.3.7. Maintenance bypass

The manual or maintenance bypass module is not necessary for operation of the UPS and therefore it is not always supplied in the standard configuration.

The aim of this module is to enable routine or non-routine maintenance to be carried out without interrupting the power supply.

3.3.8. Storage systems

The storage system is the power source which supplies the inverter during a mains power outage, preventing power interruptions to the connected applications.

• Batteries.

Batteries are the most common means of storing energy. They are electrochemical devices and are therefore sensitive to operating conditions: temperature, charge and discharge cycles. The most commonly used batteries for this purpose are sealed, lead-acid maintenance-free batteries, open-vented or nickel-cadmium.

Battery performance is expressed in terms of design life and the type of discharge permitted. Excellent performance is provided by long-life batteries (10-12 years) with high-rate discharge.

Battery life is theoretical. In practice, it depends on the charge/discharge cycles and the temperature of the place of installation.

To illustrate how temperature affects battery life, EUROBAT (Association of European Storage Battery Manufacturers) states that the expected service life is halved for every 10°C above 25°C. This means that batteries with a "10-12 year" design life which are installed in places within an ambient temperature of 35°C or 45°C will last no longer than 5-6 years and 2.5-3 years respectively.

The place where the batteries are installed must be equipped with adequate ventilation and air conditioning to guarantee the correct operation of the batteries and the safety of the installation. To this effect the following formula can be applied in accordance with Standard EN 50272, which aims to keep the concentration of hydrogen in the room below the threshold of 4%vol.

$$Q=v \cdot q \cdot s \cdot n \cdot I_{gas} \cdot C_{rt} \cdot 10^{-3} [m^3/h]$$

where:

Q = ventilation air flow in m³/h

v = necessary hydrogen dilution factor

q = 0.42 x 10-3 m³/Ah hydrogen generation

s = 5, general safety factor

n = number of battery cells

 I_{gas} = current producing gas expressed in mA/Ah of assigned capacity, for float charging current or for boost charging current C_{rt} = C10 capacity for lead-acid cells

(Ah), Uf = 1.80 V/cell at 20°C or C5 for nickel-cadmium cells (Ah), Uf = 1.00 V/cell at 20°C.

By combining the constants the formula is simplified to:

$$Q = 0.05 \cdot n \cdot I_{gas} \cdot C_{rt} \cdot 10^{-3} [m^3/h]$$

Unless otherwise specified by the battery manufacturer:

lgas	Open cells of lead-acid batteries	VRLA cells of lead-acid batteries	Open cells of nickel-cadmium batteries	
During float charge	5	1	5	
During boost charge	20	8	50	

Protection against power micro-interruptions.

Flywheel and batteries can also be used simultaneously in UPS units, with the advantage of increased battery life. This is possible because the flywheel, in parallel with the batteries, ensures protection during brief interruptions, therefore preserving the capacity of the batteries for longer outages and improving their lifecycle.

The service life of flywheels is over four times longer than batteries. They are also stable, reliable and require minimal maintenance. Furthermore, unlike batteries, they are not subject to significant fluctuations in the cost of lead.

Control.

The brain of the UPS is its control system. The best architectures are based on digital signal processing (DSP) microprocessors which are able to perform complex calculations and algorithms. Architectures enable the machine to respond to different events and to report states and events via communication interfaces.

3.4. Backfeed protection

Backfeed protection prevents voltage from returning to the mains power supply. This issue is governed by standard EN 62040-1-1. Backfeed protection is mandatory in fixed and mobile installations. In the case of fixed installations, the backfeed protection can be external to the UPS unit when indicated by a suitable warning label.

3.5. UPS sizing

Choosing the power rating of a UPS unit is a process which involves taking into account various elements, both functional and regulatory.

The main elements to be considered may include:

- two of the following parameters regarding the loads to be supplied:
 - Active Power (PRL);
 - Apparent Power (SRL);
 - Power Factor (PF).
- type of load power supply (voltage, frequency, number of phases);
- load coincidence factor;
- required back-up time;
- type of mains power supply (voltage, frequency, number of phases).

In the event of a particular load, which for example requires a high inrush current, this current value must be taken into account. Once the following parameters are known:

- ÎUPS maximum current of the UPS;
- tups the time for which lups is sustainable;
- $\hat{\sf l}_{\sf L}$ overload current required by the load;
- \bullet SL apparent power of the load

the apparent power rating, in case of load crest factor 3:1, is

$$S_{UPS} = S_L \cdot \frac{\hat{I}_L}{\hat{I}_{UPS}}$$

If the load is also strongly non-linear, as is the case with electronic equipment for example, and if the crest factor is higher than that tolerated by the UPS, it is advisable to consider a derating factor.

3.6. Temperature control in the place of installation

Normally, uninterruptible power systems can function at nominal powers for ambient temperatures up to 40 °C, heating the environment in which they are installed due to electrical losses dissipated in the form of heat. These losses cause the natural temperature to increase (Δ T) and are normally indicated by UPS manufacturers. The temperature of a room, which is 25 °C with the UPS switched off, may increase by up to 15 °C before it is necessary to derate the equipment. Room ventilation or air conditioning may enable these limits to be respected.

For ventilation, the following empirical formula is provided:

$$Q\left[m^{3}/h\right] = \frac{P\left[kcal/h\right]}{0.288 \cdot \Delta T\left[W\right]} = \frac{P\left[W\right]}{0.248 \cdot \Delta T\left[K\right]}$$

where:

Q = Air flow rate

P = Power dissipated in the enclosure

ΔT = Difference between maximum air temperature permitted in the enclosure and the maximum temperature of air used for cooling

In terms of temperature difference, degrees Kelvin (°K) and Centigrade (°C) are equal (this does not apply to absolute values). For ventilation, see also the paragraph "Batteries" regarding safety in the battery room.

Meanwhile as regards air conditioning, you are recommended to contact the equipment supplier with the characteristics of the place of installation and the electrical losses of the UPS. It is advisable to consider the worst-case operating conditions: typically at midday in summer.

3.7. Central power supply systems (CPSS)

Central power supply systems (CPSS) provide a centralized, independent energy supply to essential safety equipment such as emergency escape lighting, electrical circuits of automatic fire extinguishing systems, paging systems and signalling safety installations, smoke extraction equipment and carbon monoxide warning systems for specific buildings (e.g. in high-risk areas).

An uninterruptible power supply, when used to power essential safety systems such as those listed above, must comply not only with the requirements of the EN 62040 series of product standards, but also with the additional requirements of system standard EN 50171.

The main additional characteristics which the system must have can be summarised as follows:

- the enclosures must be resistant to specific thermal stresses (glow wire tests)
- the input voltage must be in conformity with HD472 S1, with frequency within ±2% of the nominal value
- specifically the batteries must be:
 - protected against total discharge
 - long-life batteries
 - protected against polarity inversion of the connection cables
 - quick charging

In order for the power supply system to be effective, suitable precautions must be taken with respect to all of its component parts (protection devices, lines, etc.).

Note that other national requirements may exist in addition to those specified here.

3.8. Generator sizing

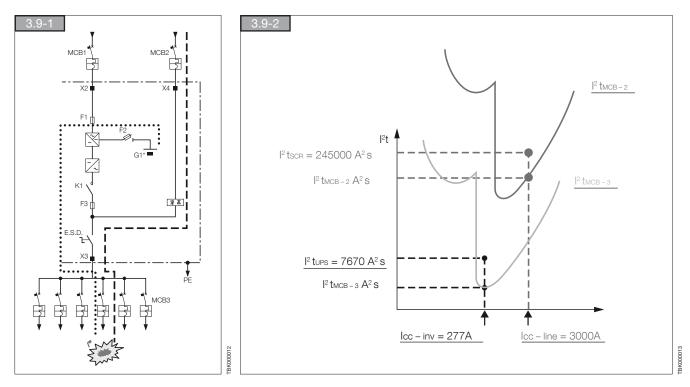
When the power source of the uninterruptible power supply includes a generator, in determining the latter it is necessary to take into account the voltage drop in the series impedance of the generator set due to harmonic variations.

The most suitable parameter for this calculation is the subtransitory reactance of the alternator, calculated for each frequency involved.

The subtransitory reactance value is provided in the generator set data sheets and is normally indicated with X"d.

$$\Delta V_{\%} = \sqrt{\frac{\sum_{i} X_{d}^{"} I_{i}^{2}}{I_{n}^{2}}}$$

The criteria is to choose the generator set which, given the current harmonics of the UPS, has a harmonic voltage drop, and therefore distortion, within the tolerance limit permitted by the line.


3.9. Protection devices

3.9.1. Definitions

- Total selectivity: is guaranteed for all types of fault (overload, short-circuit, earth fault) and for all overcurrent values, between the trip threshold of the upstream device and the prospective short-circuit current at the point where the downstream device is installed.
- Partial selectivity: is guaranteed up to a certain overcurrent limit Is (selectivity limit current).

3.9.2. Selecting and co-ordinating devices to protect against overloads and short-circuits

- Overload selectivity: for breaker trip times from several hours to several seconds (overcurrents up to 6-8 times the nominal current), the co-ordination curves (breaker time-current curves) must never overlap. In the event of overload, the UPS continues normal operation by switching to the bypass when the thermal limits of the inverter are reached. Consequently, this transfer must be taken into account during co-ordination of the various protection devices. The UPS data sheets normally indicate the overload currents "per unit" or "as a percentage" and the corresponding tolerance time.
- Short-circuit selectivity: short-circuit currents can be very high, so the protection devices must be tripped within a few milliseconds to prevent burn-out of the cables. The time-current curves used as criteria for selecting overload protection are not valid when considering short-circuit protection, on account of the short trip times. In this case, the breakers must be sized based on the Joule integral curves of the devices. In practice, for a given prospective short-circuit current value, the minimum I2t let-through of the upstream device must be greater than the maximum I2t let-though of the downstream device.

In the case of short-circuit of one of the loads connected downstream of the UPS, two cases must be distinguished:

• The bypass (back-up supply) upstream of the UPS is available.

For an output short-circuit, the UPS will transfer the load onto the bypass after a delay dependent on the individual model. The thermal-magnetic breakers of the bypass (MCB2) and output which protect the short-circuited load line (MCB3) are positioned in series (short-circuit marked in the diagram by means of the dashed line). For proper co-ordination, the output switch (MCB3) must open before the main input switch (MCB2). Then, the I²t let-through of MCB3 must be lower than the let-through of MCB2 (at the prospective short-circuit current value): I²t_{MCB3}<

Furthermore, it is necessary to verify the selectivity between the bypass input thermal-magnetic switch and the maximum power tolerated by the bypass SCRs (in the example 245000 A²s) at the prospective short-circuit (line) current (in the example 3000 A), e.g. I²t_{SCR}>I²t_{MCB2}.

The system setup

In this case, the line impedance for estimating the short-circuit is that which takes into account the routing of power via the bypass. In the case of a back-up supply provided by a generator set, it is the short-circuit current of the generator set that must be used to correctly co-ordinate the protection devices.

• The bypass (back-up supply) upstream of the UPS is unavailable.

Since the load cannot be transferred to the bypass (which is unavailable), the short-circuit energy is supplied entirely by the inverter and batteries. The downstream protection devices must be triggered before the electronic activation of the UPS protection in order to prevent healthy loads being switched off.

The example (in the figure the short-circuit is represented by the dotted line), considers the three-phase short-circuit current from a 277 A battery for a maximum time of 100ms.

The output short-circuit energy supplied by the UPS is: $I^2 t_{UPS} = (277 A)^2 x \ 0.1 \ s = 7672 \ A^2 s$

At the short-circuit current value, in this case is not prospective but actual and coinciding with the short-circuit current value of the UPS, for correct selectivity it must be verified that $l^2t_{MCB3} < l^2t_{UPS}$.

This second case (short-circuit without upstream supply) is nevertheless highly unlikely. In fact the absence of the upstream supply presupposes that a fault has occurred, and it is unlikely that a second fault (output short-circuit) would occur during the period of the power outage, which is usually short. In general, this period coincides with the time that the battery is supplying power (if the rectifier and the bypass do not have separate power supplies) or with the MTTR of the fault by an operator (if the UPS rectifier and the bypass have two different power supplies, as in this example).

In the case of short-circuit without bypass supply, the current will be distorted to a square waveform.

3.9.3. Selecting and sizing differential breakers

There is no hard and fast rule since the behaviour of the mains supply to faults essentially depends on the neutral system used, the UPS filters (which divert certain harmonic components to earth) and the point of the fault.

Note.

The presence of isolation transformers can change the neutral system upstream or downstream of the UPS.

Generally speaking it is advisable to use:

- a single differential in the case of parallel UPS;
- type A differentials for single-phase in, single-phase out UPS;
- type B differentials for three-phase in, single-phase out UPS and three-phase in, three-phase out UPS.

3.9.4. Overvoltage protection devices

In conformity with IEC requirements, UPS systems are equipped with overvoltage protection. Unless otherwise required, the most common protection devices are Class 2. Usually, when the units are installed on the customer's premises, it is not necessary to increase the overvoltage protection class of the device. Nevertheless, if the units are installed in a transformer cabinet, the overvoltage protection class of the connection must be analysed and, if necessary, increased by installing additional protection devices.

3.10. Maintenance

In order to maximise uptime, it is advisable to perform periodic maintenance on components subject to wear:

- Capacitors;
- Fans;
- Batteries:

It is important that the maintenance is performed by expert personnel authorised by the UPS manufacturer.

3.11. Directives and Standards

3.11.1. Directives

- Low Voltage Directive 2006/95/EC
- Electromagnetic Compatibility Directive 2004/108/EC.

3.11.2. Safety Standards

- EN 62040-1-1 "Uninterruptible power systems (UPS) Part 1-1: General and safety requirements for UPS used in operator access areas"
- EN 62040-1-2 "Uninterruptible power systems (UPS) Part 1-2: General and safety requirements for UPS used in restricted access locations".

3.11.3. Electromagnetic Compatibility Standards

EN 62040-2 "Uninterruptible power systems (UPS) Part 2: Electromagnetic compatibility (EMC) requirements"

3.11.4. Performance

EN 62040-3 "Uninterruptible power systems (UPS) Methods of specifying the performance and test requirements".

3.11.5. Other standards

- IEC 60364-X-X "Electrical installations in buildings";
- IEC 60439-1 "Low-voltage switches";
- IEC 60529 "Degrees of protection provided by enclosures"
- EN 50272-2 "Safety requirements for secondary batteries and battery installations Part 2: Stationary batteries".

4. STATIC TRANSFER SYSTEMS (STS)

4.1. Definition

Static Transfer Systems (STS) are intelligent units which, in the event that the primary power source does not return the tolerance values permitted by the load, transfer the load to an alternative source). This ensures "high availability" of the power supply for sensitive or critical installations.

The purpose of STS devices is to:

- ensure the redundancy of the power supply to critical installations by means of two independent power sources;
- increase power supply reliability for sensitive installations;
- facilitate the design and expansion of installations that guarantee a high-availability power supply.

STS systems incorporate reliable and proven solid-state switching technologies (SCR), enabling them to perform fast, totally safe automatic or manual switching without interrupting power to the supplied systems.

The use of high-quality components, fault-tolerant architecture, the ability to determine the location of the fault, management of faults and loads with high inrush currents: these are just some of the characteristics that make STS systems the ideal solution for achieving maximum power availability.

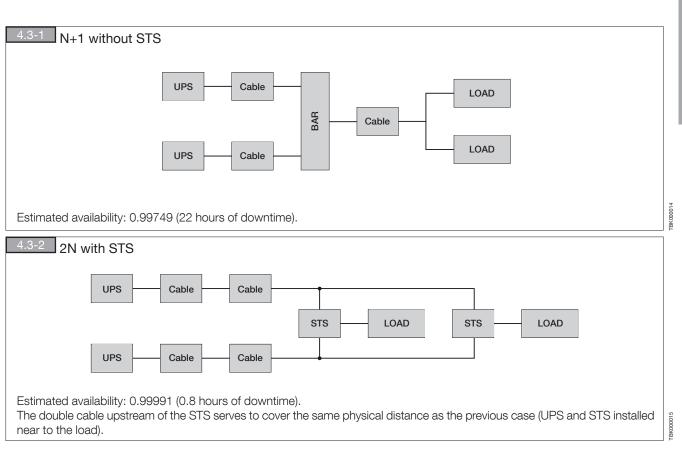
4.2. Performance (IEC 62310-3 definition)

Standard IEC 62310-3 establishes a code that clearly defines the performance of a STS:

XX YY	В	TS
-------	---	----

where:

- XX characterises the management of the fault current:
 - which can be CB (STS is capable of withstanding specific short-circuit currents, which incorporates overvoltage protection devices)
 - PC (STS capable of withstanding specific short-circuit currents, which does not incorporate overvoltage protection devices).
- YY refers to the neutral management characteristics:
 - 00: no neutral management;
 - NC: both input neutrals are combined;
 - NS: separation of the two input neutrals by switching;
 - NI: neutral separation by isolation transformer (typically external to the machine).
- B are the transfer characteristics:
 - B: break-before-make (open transition transfer), there is no conduction path between the two sources during switching;
 - M: make-before-break (closed transition transfer), conduction possible between the two sources during switching.
- TS characteristics of the voltage limits permitted by the critical load:
 - T: total transient time to the terminals of the load, including switching time;
 - S: voltage tolerance before the transfer process is activated.

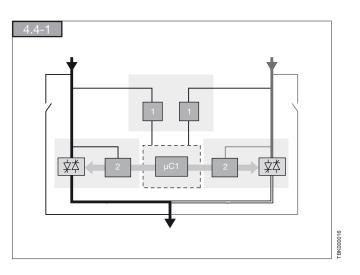

4.3. STS usage examples

Comparison between availability estimates between two architectures respectively with and without STS.

It is advisable to install the STS device as close as possible to the load, so as to ensure redundancy of the upstream distribution and to keep the single fault point (the conductor between STS and load) as short as possible.

4. STATIC TRANSFER SYSTEMS (STS)

4.4. **Functional modules**


The aim of the STS is to increase the overall system availability. To achieve this it must be fault-tolerant: the load must be supplied even in the event of an internal fault.

4.4.1. SCR modules

Silicon-controlled rectifiers are solid-state switches which control the flow of current to the load. The SCR is only able to interrupt the current as it passes through zero. In a sinusoidal steady-state, this implies switching times of between 0ms and a semi-period.

4.4.2. Power supply module

Module which draws power from the primary or alternative source, or from both sources, to supply all of the control electronics. It could be redundant allowing an higher fault tollerance.

4.4.3. Control

- Control logic: the brain of the STS is a microcontroller where all of the decision-making logic is located.
- SCR control modules: components which translate the control signal received by the logic into commands to the SCR. It could be redundant allowing an higher fault tollerance.

The system setup

4.4.4. Maintenance bypass

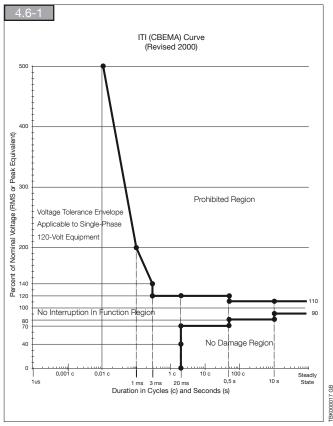
Normally built into the STS, the aim of the bypass is to enable routine and non-routine maintenance to be carried out. When the bypass is in operation, switching is not possible in case the conducting source exceeds the tolerance limits permitted by the load. The STS device must be designed and operate so the two sources cannot be directly connected, not even in the event of human error.

4.5. Backfeed protection

Product standard IEC 62310 establishes a minimum requirement that the STS must control upstream breakers that trip to prevent power flowing from one source to the other.

4.6. Selecting a STS

The STS must be sized on the basis of the system diagram, the currents of the loads supplied by the STS, the distribution network


and the power dips admitted by the load. With regard to the power failure tolerance of loads, the Information Technology Industry Council has published a guideline curve which helps users to determine the power supply conditions which can be tolerated by IT loads.

Firstly, it is necessary to identify the rating characteristics of the electrical system and the neutral:

- Voltage and frequency;
- Single or three-phase;
- With or without distributed neutral;
- Neutral condition (TN-C, TN-S, IT, TT);
- Sources (line/line, UPS/generator, UPS/UPS, etc).

Next it is necessary to determine whether the neutral must be switched (broken). In this respect, SOCOMEC offers the following advice:

- TN-C: no switching (regulatory requirement);
- TN-S: switching (requirement if sources provided with differential protection);
- IT: switching.
- TT: switching.

It is then necessary to determine the total current that must pass

through the STS device as the sum of the nominal currents of the various downstream loads.

It is also important to verify the installation of loads such as transformers or electric motors downstream of the STS, in order to prevent nuisance trips due to high inrush currents when switching between sources, or residual downstream voltage which impairs power failure detection. If such loads are installed, this must be taken into account during selection and configuration of the STS.

4.7. Protection devices

4.7.1. Selecting and coordinating thermal-magnetic breakers

In order to select the right overload or short-circuit protection devices, it is important to consider the STS system's behaviour in the event of overloads. Normally, the conducting branch of the STS withstands the overload/short-circuit for a time depending on the intensity of the currents, before the STS switches to the other branch. If the two networks have different impedances or short-circuit capacities, these must be taken into account. If the values are insufficient to trigger the breakers within the time limit permitted by the STS, the STS will interrupt the power supply upstream, resulting in all downstream loads being switched off.

4.7.2. Selecting and sizing differential breakers

When present, the neutral between the two sources can be combined and switched or otherwise (see paragraph Choosing an STS). In the case of a TN-C system, the neutral acts as an earth conductor and therefore cannot be broken. In the case of a TN-S system, the installation depends on what type of downstream STS has been selected. If the device does not switch the neutral, any neutral currents could be divided between the two parallel networks by means of the earth connection in the cabinet. The installation of differential breakers is not recommended due to the high probability of them tripping.

By contrast, if the STS device switches the neutral, this will avoid any unexpected current between both sources and earthing.

Differential protection may be installed.

Each IT systems has his own IMD (Insulation Measurement Device). Therefore every neutral has to be switched to avoid any mutual disturbances between the IMDs.

TT systems are typically used in residential or civil applications. This implies the use of differential protection and therefore a STS system which switches the neutral.

4.8. Maintenance

In order to maximise uptime, it is advisable to perform periodic maintenance on the fans (since they are components subject to wear). It is important that maintenance is performed by expert personnel authorised by the STS system manufacturer.

4.9. Directives and Standards

EEC 73/23 "Low-Voltage Directive"

EEC 89/336 "Electromagnetic Compatibility Directive"

IEC 62310-1 "Static Transfer Systems: general and safety requirements"

IEC 62310-2 "Static Transfer Systems: electromagnetic compatibility (EMC) requirements"

IEC 62310-3 "Static Transfer Systems: Method for specifying performance and test requirements"

IEC 60364-4 "Electrical installations of buildings"

IEC 60950-1 "Safety of IT. equipment"

IEC 60529 "Degrees of protection provided by enclosures (IP)"

IEC 60439-1 "Low-voltage switchgear and control gear assemblies"

5. COMMUNICATION

5.1. Protocols

- SMTP: communication protocol for email transmission, supported by all email clients;
- SNMP: protocol used to monitor networked devices; requires compatible software;
- HID: Human Interface Device, a protocol included in Windows and MAC OSx operating systems;
- JBUS/MODBUS: the most commonly available communications protocol for connecting industrial electronic devices;
- PROFIBUS & PROFINET: protocol for industrial and process automation, used by Siemens;
- TCP/IP: a suite protocols used to transmit information over the Ethernet;
- http: protocol used to transfer web pages in HTML format.

5.2. Physical supports

Physical infrastructures which convey information using communication protocols.

- USB: serial communication standard which enables various peripherals to be connected to a computer;
- Ethernet: interface for local area networks (LAN);
- RS 232: low-speed serial interface for data exchange between digital devices, suitable for distances of up to 10 m;
- RS 485: serial interface for data exchange between digital devices, suitable for distances of up to 1000 m;
- Dry contacts. interface with contacts which have no electrical potential and which can be NO (normally open) or NC (normally closed).

5.3. Remote services

UPS and STS systems must be able to remotely communicate their operating statuses, electrical / environmental parameters and fault alarms. Furthermore, certain commands should be possible for remote control of the equipment.

Some remote monitoring services operate 24 hours a day, 365 days a year, enabling equipment to be installed in places where human supervision is limited (to working hours) or absent. The rapid notification of abnormal events allows for prompt intervention by the technical support service, resulting in reduced risk and MTTR.

6. TOTAL COST OF OWNERSHIP (TCO)

6.1. Definition

Total Cost of Ownership (TCO) includes all of the direct and indirect costs over the lifetime of the equipment. It defines:

- CAPEX: cost of the equipment, its installation, system modifications if required and operator training;
- OPEX: costs of running the equipment, e.g. power consumption, cost of installation space (for example, the share of building rent proportional to the area occupied by the equipment), as well as routine and non-routine maintenance.

6.2. Impact of UPS or STS systems on the TCO

6.2.1. THDi and $\cos\varphi$ input

Valid only for UPS.

High harmonic content of the input current and low $\cos \varphi$ imply the use of harmonic filters, overrating of cables and protection devices as well as the risk of nuisance trips. In economic terms, this means higher project, system and installation costs and higher costs due to system downtime. Optimum situation: low harmonic content and high $\cos \varphi$.

6.2.2. Footprint

The floor space occupied by the equipment. Can be net or gross, plan dimensions of the equipment and plan dimensions plus space required for operation and maintenance respectively.

UPS and STS systems do not generate value, but their purpose is to protect equipment which does generate value (servers, industrial processes). Therefore the space occupied is not available to the actual production process itself. In the case of *data centres*, it is the space where it is not possible to install the servers. Optimum situation: minimal footprint.

6.2.3. Performance

Efficiency refers to the proportion of input energy available to the load. Indirectly it is the measurement of losses, e.g. energy paid for but not used. Given that fossil fuels can be used to produce electrical energy (releasing gases that cause the greenhouse effect in the atmosphere), energy losses also entail unnecessary gas emissions and their corresponding impact on the environment. Optimum situation: high efficiency.

6.2.4. Front access and ventilation

An equipment unit with front access notably simplifies routine and non-routine maintenance operations, leading to a considerable reduction in repair times (MTTR) compared to equipment which must be moved in order to gain access to the sides or rear.

Furthermore, equipment with front access only, incorporating a front air inlet and top air outlet, allows for wall-mounted installation and therefore a reduced gross footprint.

6.2.5. Ease of use

In its popular publication *Tier Classifications define site infrastructure performance*, the Uptime Institute states that 70% of downtime is caused by human error (mistakes in checking and routine maintenance).

Equipment which is easy to use reduces these risks, lowers downtime costs and requires shorter, less intensive training for operators.

6.2.6. Communication systems

Remote monitoring and control enable time and human resources to be streamlined while reducing maintenance and repair times in the event of abnormal situations. For this reason, the equipment must be capable of being integrated into Building Management Systems (BMS).

7. ENVIRONMENTAL COMPATIBILITY

7.1. RoHS and WEEE directives

The official stance of CEMEP (Comité Européen de Constructeurs de Machines Electriques et d'Electronique de Puissance -European Committee of Manufacturers of Electrical Machines and Power Electronics) is that the RoHS and WEEE directives do not apply to UPS.

7.2. Performance

The only reference for efficiency performance is given by the European Code of Conduct (http://re.jrc.ec.europa.eu/energyefficiency/ html/AC%20UPS-ParticipantsCoC.htm). Manufacturers can adhere to it on a voluntary basis by committing to the minimum efficiency requirements of the code.

8. DIRECT ENERGY IMPACT

The energy efficiency of an equipment unit is defined as:

$$\eta = \frac{P_{out}}{P_{in}}$$

where:

• Pin is the input power

• Pout is the output power, which in the case of the UPS coincides with the Pn (nominal power).

Using simple calculations we can determine heat loss (Perd) as follows:

$$P_{erd} = P_n \left[\frac{l - \eta}{\eta} \right]$$

Approximately 0.61kg of carbon dioxide is generated per kWh of energy lost (http://www.eia.doe.gov/cneaf/electricity/page/ co2_report/co2report.html#electric), with the resulting environmental consequences and an average energy cost in Europe of 0.12€.

$$P_{erd_{93\%}} = 150 \ kW \quad \left[\frac{1-0.93}{0.93}\right] \cdot 24 \cdot 365 = 98.9 \ MWh \longrightarrow 60 \ t_{CO2} + 11800 \ \epsilon$$

$$P_{erd_{96\%}} = 150 \ kW \quad \left[\frac{1-0.96}{0.96}\right] \cdot 24 \cdot 365 = 54.7 \ MWh \longrightarrow 33 \ t_{CO2} + 6600 \ \epsilon$$

On a load-for-load basis, the UPS with 96% efficiency achieves an annual saving of 5200€ and 27t of carbon dioxide for air conditioning alone, the same output as a car manufactured in 2005 with 170,000km on the clock. (http://en.wikipedia.org/wiki/ European_emission_standards).

9. IMPACT ON AIR CONDITIONING

Electrical losses are dispersed, in the form of heat, into the environment. In applications where the temperature must be controlled and the heat capacity of the environment is insufficient, measures must be taken to cool the environment. There are different ways of doing this: from simple ventilation, e.g. the movement of air masses of the desired temperature which are already available in the vicinity of the installation, to air conditioning, e.g. the cooling and circulation of air masses.

There are also technologies based on the use of water as a heat transfer fluid, but this is less common.

Air conditioning is the most frequently used technology. The parameter which measures the electrical energy needed to release energy in the form of heat is Coefficient of Performance (COP). When talking about electricity, we normally refer to power instead of energy, consequently the definition of COP. becomes:

$$C.O.P. = \frac{P_t}{P_e}$$

where:

• Pt: the thermal power to be released;

• Pe is the electric power needed to do it.

With close approximation, 3 can be considered as a typical COP value.

This means that for every 3 kW of thermal power dissipated, 1 electrical kW is needed.

This means that the efficiency rating of plant equipment is only partly able to quantify heat dissipation, since it does not take into account the energy needed to achieve it.

By way of indication, below are the annual air conditioning costs in relation to the example given in the previous paragraph (two different UPS with respective efficiency ratings of 93% and 96%, considering an average annual energy cost in Europe of 0.12 €/kWh).

$$HVAC_{93\%} = \frac{-98,9 \ MWh}{3} \cong 33 \ MWh \longrightarrow 20 \ t_{co2} + 4000 \ \epsilon$$

$$HVAC_{96\%} = \frac{54,7 \text{ MWh}}{3} \cong 11 \text{ MWh} \longrightarrow 11 t_{co2} + 2200 \text{ }$$

On a load-for-load basis, the UPS with 96% efficiency achieves an annual saving, for air conditioning alone, of 1800 € and 9 t of carbon dioxide. Taking into account direct heat loss, the savings increase to 7200 € and 36 t of CO₂.

Standard 200 kVA UPS emissions

72.100 CO² kg

Green Power 200 kVA UPS emissions

40.400 CO² kg

MASTERYS BC+ 10 to 40 kVA

Socomec Resource Center To download, brochures, catalogues and technical manuals

OBJECTIVES

The aim of these specifications is to provide:

- the information required to choose the correct uninterruptible power supply for a specific application.
- the information required to prepare the system and installation site.

The specifications are intended for:

- installation engineers.
- design engineers.
- engineering consultants.

INSTALLATION REQUIREMENTS AND PROTECTION

Connection to the mains power supply and load(s) must be implemented using cables of suitable size, in accordance with current standards. If not already present, an electrical control station which can isolate the network upstream of the UPS must be installed. This electrical control station must be equipped with a circuit breaker (or two, if there is a separate bypass line) of an appropriate rating for the power drawn at full load.

If an external manual bypass is required, only the model supplied by the manufacturer must be installed.

We recommend fitting two metres of unanchored flexible cable between the UPS terminals and the cable anchor (wall or cabinet). This makes it possible to move and service the UPS.

For detailed information, see the installation and operating manual.

1. ARCHITECTURE

1.1 RANGE

MASTERYS BC+ is a full range of high performing UPS designed to protect critical and sensitive appliances in "business critical" applications such as data servers.

MODELS								
Rated power (kVA)	10	15	20	10	15	20	30	40
	3/1 3/3							
MASTERYS BC+ B3 / M3	•	•	•	•	•	•		
MASTERYS BC+ S4							•	•
MASTERYS BC+ M4	•	•	•	•	•	•	•	•
MASTERYS BC+ FL	•	٠	•	•	•	•	•	•

Matrix table for model and kVA power rating

Each family has been specifically designed to meet the demands of loads in specific application contexts, in order to optimise product features and facilitate integration within the system.

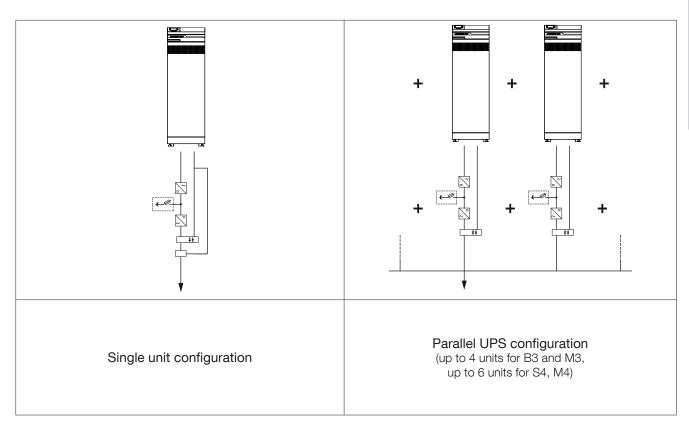
2. FLEXIBILITY

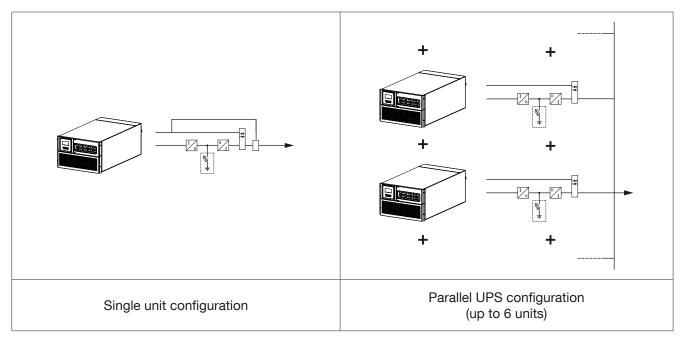
2.1 POWER RATINGS 10 TO 40 KVA

DIMENSIONS					
Cabinet type		Width (W) [mm]	Depth (D) [mm]	Height (H) [mm]	
	B 3	370	770	1190	
	М3	370	770	1375	
	S4	444	800	800	
	M4	444	800	1400	
	FL	442	830	305	

The equipment has been designed with a minimum direct and indirect footprint (the actual space occupied by the unit and the space required around it for maintenance, ventilation and access to operating mechanisms and communication devices).

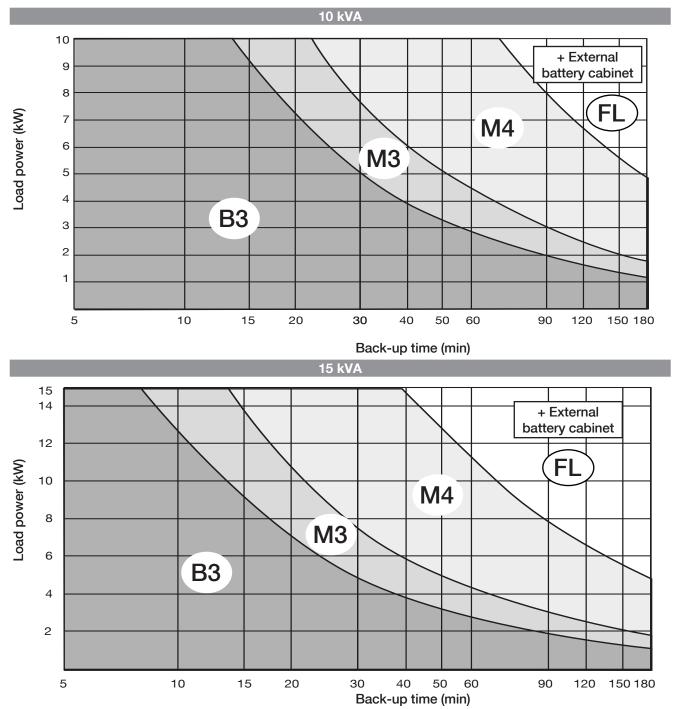
All of the control mechanisms and communication interfaces are located in the upper front section and can be accessed from the first panel with the red surround (for B3 and M3, they are accessible from the back of the UPS).


The intelligent design also provides easy access for maintenance and installation.

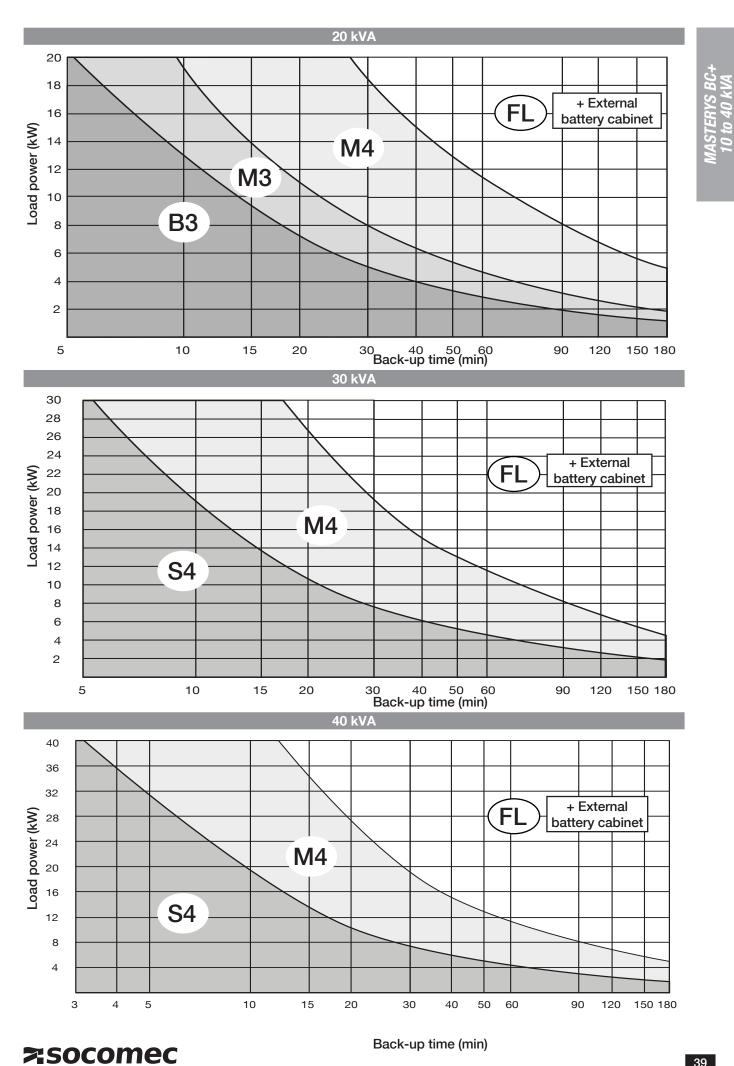

The air inlet is on the front, with outflow to the rear.

2.2 PARALLEL

MASTERYS BC+ enables 2 configurations of UPS systems in the same range



2.3 FLEXIBLE BACK-UP TIME


Different back-up times are possible by using models with internal battery or FLEX (FL) with external battery cabinets. Batteries are installed on acid-proof trays and connected by means of polarised connectors to facilitate their maintenance. To guarantee maximum back-up time availability and battery life, the MASTERYS BC+ 10-40 series is equipped with an EBS (Expert Battery System).

For external battery cabinets use model FL.

For internal batteries, use the following charts to select the model (B3, M3, S4 or M4) in relation to power and back-up time.

Innovative Power Solutions

39

3. STANDARD FEATURES AND OPTIONS

Availa	bility
	Factory-installed option
0	Available as option (installation on site)
STD	Standard feature

FEATURES		MAST	ERYS E	BC+				
	B3 M3	S4 N	14	FL		Notes		
	10-15-20 kVA	10-15-20 kVA	30-40 kVA	10-15-20 kVA	30-40 kVA	Notes		
Battery Option								
Additional charger		•0	•0	•0	•0			
Communication Option								
Standard web pages	STD							
ACS card		• •	• •	• •	• •			
(Automatic Cross Synchronisation)		•0	•0	•0	• 0			
ADC+SL card	0	0	0	0	0			
(Advanced Dry Contact + Serial Link)	0	0	0	0	0			
External temperature sensor	0	0	0	0	0	ADC+SL card		
Remote touchscreen display	0	0	0	0	0	ADC+SL card		
BACnet/IP interface card	0	0	0	0	0			
Modbus TCP interface card	0	0	0	0	0			
Net Vision card								
(professional WEB/SNMP interface for UPS monitoring)	0	0	0	0	0			
EMD						A		
(Environmental Monitoring Device: temperature, humidity, 2 dry contacts)	0	0	0	0	0	Net Vision card		
Electrical Option								
Parallel card	•0	•0	•0	•0	•0			
External maintenance bypass	0	0	0	0	0			
External maintenance bypass width adapter kit				0	0			
Kit for TN-C / Neutral-Ground connection	0	0	0	0	0			
Internal Backfeed isolation device	•	•	•	•	•			
Kit For Common Mains	STD (3/3)	STD (3/3)	0	STD (3/3)	0			
		STD (3/1)		STD (3/1)				
Kit For Separate Mains	• (3/3)	• (3/3)	STD	• (3/3)	STD			
Mechanical Option	- (3/3)	• (3/3)		- (3/3)				
Ramp for unloading UPS	0	0	0					
Kit for Front and Lateral Cover	0							
Kit for IP21	0	0	0					
	(Tower Mo	-		0				
Kit for Free Standing		unted) Battery Cabine		0	0			
Kit for Top Mounted width		-						
adaptation	(1007-5000	mec Battery C	aDinet)	0	0			

Required option

O Incompatible option

4. SPECIFICATIONS BC+ 10-20 KVA COMPACT

4.1 INSTALLATION PARAMETERS

INSTALLATION P	ARAMETER	S									
Rated power (kVA)			10	15	20	10	15	20			
Phase in/out			3/1 3/3								
Active power		kW 10 15 20 10 15 20						20			
Rated/maximum recti current (EN 62040-3)	fier input	А	16/21	23/30	31/39	16/21 23/30 31					
Rated bypass input c	urrent	А	44	44 65 87 15 22 29							
Inverter output curren	t @ 230 V	А	44	65	87 15 22 29						
Maximum air flow		m³/h	408 816 408 816								
Sound level		dBA	48	5	50 48 50						
		W	604	841	1164	593 825 114					
Power Dissipation in r conditions ⁽¹⁾	nominal	kcal/h	517	720			977				
		BTU/h	2060	2869	3971	2023					
		W	684	900	1253	672	883	1230			
Power Dissipation (ma conditions ⁽²⁾	ax) in worst	kcal/h	585	770	1072	575	755	1052			
Conditions		BTU/h	2333	3070	4274	2292	3012	4196			
Dimensions	Width	mm			37	70					
(with standard back-up	Depth	mm			77	70					
time)	Height	mm			1190/	/1375					
	Operational	mm			Rear	≥ 200					
Single unit clearances	Maintenance	mm			Front ≥ 1500); Top ≥ 800	00				
Weight, without batte	ries	kg	95	104	104 93 93 93						
Weight, with batteries							198/288				

1) Considering nominal input current (400 V, battery charged) and rated output active power.

2) Considering maximum input current (low input voltage, battery recharged) and rated output active power.

4.2 ELECTRICAL CHARACTERISTICS

zsocomec

Innovative Power Solutions

ELECTRICAL CHARACTERISTICS - IN	PUT								
Rated power (kVA)	10 15 20 10 15 20								
Phase in/out		3/1			3/3				
Rated mains supply voltage			400 V 3	3ph + N					
Voltage tolerance	3Ph-	+N 400 V -15	% +20% (up 1	to -40% @709	% of nominal	load)			
Rated frequency			50/60 Hz (selectable)					
Frequency tolerance			40-7	0 Hz					
Power factor (input at full load and rated voltage)			≥0	.99					
Total harmonic distortion (THDi)(3)	≤ 3%								
Max inrush current at start-up			< In (no ov	/ercurrent)					

3) measured with the UPS supplied with a voltage source of negligible distortion (input source THDv \leq 1% - 50Hz).

ELECTRICAL CH	IARACTERI	STICS - BYP	ASS								
Rated power (kVA)		10	15	20	10	15	;	20			
Phase in/out			3/1			3/3	3				
Bypass frequency va speed	ariation			1 Hz/s (setta	ble up to 3 Hz/s)						
Bypass rated voltage	e	Nominal output voltage ±15%									
Bypass rated freque	ncy	50/60 Hz (selectable)									
Bypass frequency to	blerance		±	2% (configura	ole from 1% to 8	5%)					
ELECTRICAL CH	IARACTERI	STICS - INVE	TICS - INVERTER								
Rated power (kVA)		10	15	20	10	15	5	20			
Phase in/out			3/1			3/3	3				
Rated output voltage	e (selectable)		220/230/240	/		380/400	/415 V				
Output voltage tolera	put voltage tolerance Static: ±1% Dynamic: VFI-SS-111										
Rated output freque	ncy			50/60 Hi	z (selectable)						
Output frequency to	lerance			±0.01% (on m	ains power failur	e)					
Load crest factor				≥	2.7:1						
Voltage harmonic dis	stortion			< 1% wi	h linear load						
Overload tolerated	10 min (kW)										
by the inverter	1 min (kW)	15	22.5	30	15	22.	5	30			
ELECTRICAL CH	IARACTERI	STICS - EFFI									
Rated power (kVA)		10	15	20	10	15	5	20			
Phase in/out			3/1			3/3	3				
Double conversion e (normal mode) - full l				Up	to 95%						
Efficiency in Eco-Mo	de	98%									
ELECTRICAL CH	IARACTERI	STICS - ENV	STICS - ENVIRONMENT								
Rated power (kVA)		10	15	20	10	15	5	20			
Phase in/out			3/1			3/3	3				
Storage temperature	es				5 °C for better ba						
Working temperature	e				°C for better ba % Sn for a limited						
Maximum relative hu (non-condensing)	umidity			9	95%						
Maximum altitude wit	thout derat-			1000 r	n (3300 ft)						
Degree of protection	1			IP20 (IP2	1 as option)						
Portability			ASTM D9	99-08, ASTM [D-880, AFNOR N	IF H 00-04	42				
Colour				RAL 7016	front E150HVF						
ELECTRICAL CH	IARACTERI	STICS - BAT	TERY								
Rated power (kVA)		10	15	20 10	15	20	30	40			
Phase in/out			3/1		, I	3/3					
Standard max. curre	ent A				4						
Battery connection in configuration	n parallel			JPS work with	distributed batte	ery					

4.3 RECOMMENDED PROTECTIONS

RECOMMENDED	PRO <u>TECT</u>	ION DEVICES	S - RE <u>CTIFIE</u>	R ⁽¹⁾								
Rated power (kVA)		10	15	20	10	15	20					
Phase in/out			3/1	<u> </u>		3/3	<u> </u>					
C curve circuit breake	er (A)	25	32	40	25	32	40					
gG fuse (A)		25	32	40	25	32	40					
RECOMMENDED	PROTECT		S - GENERAL	BYPASS ⁽¹⁾								
Rated power (kVA)		10	15	20	10	15	20					
Phase in/out			3/1	1		3/3						
Max I ² t supported by th (A ² s)	ie bypass		38920			4325						
Max lpk supported by t	he Bypass (A)		2790			930						
C curve circuit breake	er (A)	80	100	125	25	32	40					
gG fuse (A)		63/80	80/100	100/125	20/25	25/32	32/40					
RECOMMENDED	PROTECT		N DEVICES - INPUT RESIDUAL CURRENT CIRCUIT BREAKER ⁽²⁾									
Rated power (kVA)		10	10 15 20 10				20					
Phase in/out			3/1			3/3						
Input residual current of breaker	circuit	0.5 A Selective										
RECOMMENDED	PROTECT		ON DEVICES - OUTPUT ⁽³⁾									
Rated power (kVA)		10	15	20	10	15	20					
Phase in/out			3/1	1		3/3						
Short-circuit inverter current (A)	0 to 40 ms	120	180	240	40	60	80					
	40 to 100 ms	97	146	195	32	48	65					
C curve circuit breake	er ⁽³⁾ (A)	8	10	16	3	4	6					
B curve circuit breake	er ⁽³⁾ (A)	16	25	32	6	8	10					
CABLES - MAXIN	IUM CABLE	E SECTION										
Rated power (kVA)		10	15	20	10	15	20					
Phase in/out			3/1 3/3									
Rectifier terminals		25 mm ²										
Bypass terminals		25 mm ²										
Output terminals		25 mm ²										
·	1			25 mm²								

(1) Rectifier protection should only be considered in the event of separate inputs. The bypass protection is given by recommendation. When the bypass and rectifier inputs are combined (common input), the general input protection rating must be whichever is the highest (bypass or rectifier).

(2) Must be selective with residual current circuit breakers downstream of the UPS connected to the UPS output. If the bypass network is separate from the rectifier circuit, or in the event of parallel UPS configurations, use a single residual current circuit breaker upstream of the UPS.

(3) Selectivity of distribution after the UPS with inverter short-circuit current (short-circuit with AUX MAINS not present). The rating of the protection can be increased by "n" times downstream a parallel UPS system, with "n" equal to the number of parallel modules.

MASTERYS BC+ 10 to 40 kVA

5. SPECIFICATIONS1 BC+ 10-40 KVA

5.1 INSTALLATION PARAMETERS

INSTALLATION P	ARAMETER	S											
Rated power (kVA)			10	15	20	10	15	20	30	40			
Phase in/out				3/1				3/3					
Active power		kW	10	15	20	10	15	20	30	40			
Rated/maximum rectif current (EN 62040-3)	ier input	А	15/22	23/30	31/39	15/22	23/30	31/39	46/55	62/73			
Rated bypass input cu	irrent	А	48 72 96 16 24 32 48							64			
Inverter output current	@ 230 V	А	43	43 65 87 14 22 29 43									
Maximum air flow		m³/h	240							360			
Sound level		dBA	50							58			
	W 500 770 1050 500 770 1050 1600						2330						
Power Dissipation in n conditions ⁽¹⁾	ominal	kcal/h	430	662						2003			
		BTU/h	1706	2627	3583	1706	2627	3583	5664	7950			
		W	610	890	1220	610	890	1220	1780	2780			
Power Dissipation (ma conditions ⁽²⁾	x) in worst	kcal/h	524	765	1049	524	765	1049	1530	2390			
		BTU/h	2081	3037	4163	2081	3037	4163	6074	9485			
Dimensions	Width	mm				44	44			-			
(with standard back-up	Depth	mm				80	00						
time)	Height	mm			14	.00			800 / 1400				
Single unit	Operational	mm			ļ	Rear ≥ 200); Lateral ()					
Clearances	Maintenance	mm			Fr	ont ≥ 1500); Top ≥ 8	00					
Weight, with batteries	1	kg			430	/ 624			333 / 624	339 / 630			

1) Considering nominal input current (400 V, battery charged) and rated output active power.

2) Considering maximum input current (low input voltage) and rated output active power.

5.2 ELECTRICAL CHARACTERISTICS

ELECTRICAL CHARACTERISTICS - IN	PUT							
Rated power (kVA)	10	15	20	10	15	20	30	40
Phase in/out		3/1				3/3		
Rated mains supply voltage				400 V 3	3ph + N			
Voltage tolerance	3Ph+N 400 V -15% +20% (up to -40% @70% of nominal load)							i)
Rated frequency 50/60 Hz = nominal frequency	from 40 Hz to 70 Hz							
Frequency tolerance				±1	0%			
Power factor (input at full load and rated voltage)				≥C).99			
Total harmonic distortion (THDi)	≤4%			≤ 3%			≤ 2.5%	≤2%
Max inrush current at start-up	< In (no overcurrent)							
Power walk-in (from battery to normal mode)			fixed	delay of 1	5 s in swit	ching		

CTERISTI	CS - BYP	ASS							
	10	15	20	10	15	20	30	40	
		3/1	1		1	3/3	1	1	
speed	1 Hz/s (settable up to 6 Hz/s)								
			Nor	ninal outpu	t voltage ±1	15%			
				50/60 Hz	(selectable)				
9			±8%	in operatio	n with gene	erator			
CTERISTI	CS - INVE	ERTER							
	10	15	20	10	15	20	30	40	
		3/1				3/3			
e neutral	208,	/220/230/2	40 V		208/	/220/230/2	40 V		
				50/60 Hz	(selectable)				
			±0.0	1% (on mai	ns power fa	ailure)			
				≥ 2	2.7				
				± 1% with	linear load	1			
10 min	nin 12.5 18.7 25 12.5 18.7 25 37.5 56								
1 min	15	22.5	30	15	22.5	30	45	60	
CTERISTI	CS - EFFI	CIENCY							
	10	15	20	10	15	20	30	40	
		3/1			1	3/3	1		
ÿ	Up to 95%								
	99%								
CTERISTI	CS - ENV	IRONME	NT			·			
	10	15	20	10	15	20	30	40	
		3/1			1	3/3	1		
		-	5 to +50 °C	(15 to 25	°C for bette	r battery life	e)		
		0					fe)		
				95	5%				
lerating				1000 m	(3300 ft)				
				IP20 (IP21	as option)				
		AST	M D999-08	3, ASTM D-	880, AFNO	R NF H 00	-042		
			R	AL 7016 fro	ont E150H\	/F			
CTERISTI	CS - BAT	TERY							
	10	15	20	10	15	20	30	40	
		3/1				3/3			
А					5				
	speed STERISTI a neutral 10 min 1 min STERISTI y STERISTI a derating derating	10 speed 5 10 10 10 10 10 10 10 10 10 10 10 10 10 10 110 <td>3/1 speed Image: Sp</td> <td>10 15 20 3/1 3/1 speed 1 H 9 </td> <td>10 15 20 10 3/1 1 Speed 1 Speed Norminal output SO/60 Hz (20 20 CTERISTICS - INVERTER 10 15 20 10 3/1 Static Dynamic: So/60 Hz (UP (on main term) 10% 10% 12.5 10 11 10 15 10 IP20 (IP21 IP20 (IP21 IP20 (IP21</td> <td>10 15 20 10 15 speed 1 Hz/s (seltable up to 6 H Nominal output voltage ±1 SO/60 Hz (selectable) a SO/60 Hz (selectable) a SO/60 Hz (selectable) a STERISTICS - INVERTER 10 15 20 10 15 3/1 208/220/230/24 V 208/2 Static: ±1% Dynamic: VFI-SS-11 So/60 Hz (selectable) ±0.01% (on mains power factor) ±1% with linear load 10 15 22.5 10 15 20 10 15 10 15 20 10 15 10 15 20 10 15 20 10 15 20 10 15</td> <td>10 15 20 10 15 20 3/1 3/3 3/3 3/3 3/3 speed $1 Hz/s$ (seltable up to 6 Hz/s) Nominal output voltage ±15% 50/60 Hz (selectable) 3 $\pm 8\%$ in operation with generator $\pm 8\%$ in operation with generator $3/3$ 20 $3/1$ 20 10 15 20 3/1 $208/220/230/240$ V $208/220/230/2$ $3/3$ 208/220/230/240 V $208/220/230/2$ 5tatic: $\pm 1\%$ $3/3$ 208/220/230/240 V $208/220/230/2$ 5tatic: $\pm 1\%$ $3/3$ 20 $3/1$ $208/220/230/2$ 5tatic: $\pm 1\%$ $3/3$ 20 $20/20/230/2$ 5tatic: $\pm 1\%$ $3/3$ 5tatic: $\pm 1\%$ 20 $3/1$ $208/220/230/2$ 5tatic: $\pm 1\%$ $208/220/230/2$ 20 $5 = 20/2$ 5tatic: $\pm 1\%$ $208/220/230/2$ 5tatic: $\pm 1\%$ $50/60$ Hz (selectable) 10 12.5 18.7 25.7 50.7 $50/60$ Hz (selectable) <td< td=""><td>10 15 20 10 15 20 30 speed 3/3 Solido H2 (selectable up to 6 H2/s) Nominal output voltage ±15% Sol/60 H2 (selectable) setential (selectable) setential (selectable) Sol/60 H2 (selectable) setential (selectable) setential (selectable) Static: ±1% Statis: ±2.7</td></td<></td>	3/1 speed Image: Sp	10 15 20 3/1 3/1 speed 1 H 9	10 15 20 10 3/1 1 Speed 1 Speed Norminal output SO/60 Hz (20 20 CTERISTICS - INVERTER 10 15 20 10 3/1 Static Dynamic: So/60 Hz (UP (on main term) 10% 10% 12.5 10 11 10 15 10 IP20 (IP21 IP20 (IP21 IP20 (IP21	10 15 20 10 15 speed 1 Hz/s (seltable up to 6 H Nominal output voltage ±1 SO/60 Hz (selectable) a SO/60 Hz (selectable) a SO/60 Hz (selectable) a STERISTICS - INVERTER 10 15 20 10 15 3/1 208/220/230/24 V 208/2 Static: ±1% Dynamic: VFI-SS-11 So/60 Hz (selectable) ±0.01% (on mains power factor) ±1% with linear load 10 15 22.5 10 15 20 10 15 10 15 20 10 15 10 15 20 10 15 20 10 15 20 10 15	10 15 20 10 15 20 3/1 3/3 3/3 3/3 3/3 speed $1 Hz/s$ (seltable up to 6 Hz/s) Nominal output voltage ±15% 50/60 Hz (selectable) 3 $\pm 8\%$ in operation with generator $\pm 8\%$ in operation with generator $3/3$ 20 $3/1$ 20 10 15 20 3/1 $208/220/230/240$ V $208/220/230/2$ $3/3$ 208/220/230/240 V $208/220/230/2$ 5 tatic: $\pm 1\%$ $3/3$ 208/220/230/240 V $208/220/230/2$ 5 tatic: $\pm 1\%$ $3/3$ 20 $3/1$ $208/220/230/2$ 5 tatic: $\pm 1\%$ $3/3$ 20 $20/20/230/2$ 5 tatic: $\pm 1\%$ $3/3$ 5 tatic: $\pm 1\%$ 20 $3/1$ $208/220/230/2$ 5 tatic: $\pm 1\%$ $208/220/230/2$ 20 $5 = 20/2$ 5 tatic: $\pm 1\%$ $208/220/230/2$ 5 tatic: $\pm 1\%$ $50/60$ Hz (selectable) 10 12.5 18.7 25.7 50.7 $50/60$ Hz (selectable) <td< td=""><td>10 15 20 10 15 20 30 speed 3/3 Solido H2 (selectable up to 6 H2/s) Nominal output voltage ±15% Sol/60 H2 (selectable) setential (selectable) setential (selectable) Sol/60 H2 (selectable) setential (selectable) setential (selectable) Static: ±1% Statis: ±2.7</td></td<>	10 15 20 10 15 20 30 speed 3/3 Solido H2 (selectable up to 6 H2/s) Nominal output voltage ±15% Sol/60 H2 (selectable) setential (selectable) setential (selectable) Sol/60 H2 (selectable) setential (selectable) setential (selectable) Static: ±1% Statis: ±2.7	

MASTERYS BC+ 10 to 40 kVA

5.3 RECOMMENDED PROTECTIONS

RECOMMENDE	PROTECT	ION DEVI	CES - RE						
Rated power (kVA)		10	15	20	10	15	20	30	40
Phase in/out			3/1				3/3		1
C curve circuit break	er (A)	25	32	40	25	32	40	63	80
gG fuse (A)		25	32	40	25	32	40	63	80
RECOMMENDE	D PROTECT	ION DEVI	CES - GE	NERAL B					
Rated power (kVA)		10	15	20	10	15	20	30	40
Phase in/out			3/1				3/3		1
Max I ² t supported by t (A ² s)	he bypass		45000			8000		150	000
Max lpk supported b	y the Bypass		2120			1200		17	00
C curve circuit break	er (A)	63	100	125	25	32	40	63	80
gG fuse (A)		63	100	125	25	32	40	63	80
RECOMMENDE	D PROTECT	ION DEVI	CES - INF	PUT RESI	DUAL CUR	RRENT CI	RCUIT BF		-
Rated power (kVA)		10	15	20	10	15	20	30	40
Phase in/out			3/1				3/3	<u> </u>	
Input residual current breaker	circuit				0.5 A S	Selective			
RECOMMENDE	D PROTECT	ION DEVI	CES - OU	TPUT ⁽³⁾					
Rated power (kVA)		10	15	20	10	15	20	30	40
Phase in/out			3/1			1	3/3	1	L
Short-circuit inverter current (A)	de 0 à 40 ms	120	177	237	40	59	79	117	156
(when AUX MAINS is not present)	de 40 à 100 ms	99	147	198	33	49	66	98	130
C curve circuit break	er ⁽³⁾ (A)	≤ 8	≤ 10	≤ 16	≤ 3	≤ 4	≤ 6	≤ 8	≤ 10
B curve circuit break	er ⁽³⁾ (A)	≤ 16	≤ 25	≤ 32	≤ 6	≤ 8	≤ 10	≤ 16	≤ 20
CABLES - MAXI		E SECTIO	N						
Rated power (kVA)		10	15	20	10	15	20	30	40
Phase in/out			3/1				3/3		
Rectifier terminals		25	25	25	25	25	25	50	50
Bypass terminals		50	50	50	25	25	25	50	50
Output terminals		50	50	50	25	25	25	50	50
(1) Rectifier protection	should only be	considerer	d in the even	nt of separate	e inputs The	hvpass pro	ntection is ai	ven hv recon	nmendation

(1) Rectifier protection should only be considered in the event of separate inputs. The bypass protection is given by recommendation. When the bypass and rectifier inputs are combined (common input), the general input protection rating must be whichever is the highest (bypass or rectifier).

(2) Must be selective with residual current circuit breakers downstream of the UPS connected to the UPS output. If the bypass network is separate from the rectifier circuit, or in the event of parallel UPS configurations, use a single residual current circuit breaker upstream of the UPS.

(3) Selectivity of distribution after the UPS with inverter short-circuit current (short-circuit with AUX MAINS not present). The rating of the protection can be increased by "n" times downstream a parallel UPS system, with "n" equal to the number of parallel units.

6. SPECIFICATIONS BC+ FLEX 10-40 KVA

6.1 INSTALLATION PARAMETERS

INSTALLATION F	ARAMETER	S											
Rated power (kVA)			10	15	20	10	15	20	30	40			
Phase in/out				3/1				3/3					
Active power		kW	10	15	20	10	15	20	30	40			
Rated/maximum recti current (EN 62040-3)		A	15/22 23/30 31/39 15/22 23/30 31/39 46/55						62/73				
Rated bypass input c	urrent	A	48 72 96 16 24 32 48							64			
Inverter output curren	t @ 230 V	А	43 65 87 14 22 29 43							58			
Maximum air flow		m³/h	240 36						360				
Sound level		dBA	50 55						58				
		W	500	770	1050	500	770	1050	1600	2100			
Power Dissipation in r conditions ⁽¹⁾	nominal	kcal/h	430	662	903	430	662	903	1427	2003			
		BTU/h	1706	2627	3583	1706	2627	3583	5664	7950			
		W	610	890	1220	610	890	1220	1780	2780			
Power Dissipation (ma conditions ⁽²⁾	ax) in worst	kcal/h	524	765	1049	524	765	1049	1530	2390			
Conditions		BTU/h	2081	3037	4163	2081	3037	4163	6074	9485			
Dimensions	Width	mm			1	44	42			1			
(with standard back-	Depth	mm				83	30						
up time)	Height	mm				30)5						
	Operational	mm			ſ	Rear ≥ 200); Lateral ()					
Single unit Clearances	Maintenance	mm			Fr	ont ≥ 150	0 Top ≥ 80	00					
Weight, without batte	ries	kg				71				77			

1) Considering nominal input current (400 V, battery charged) and rated output active power.

2) Considering maximum input current (low input voltage) and rated output active power.

6.2 ELECTRICAL CHARACTERISTICS

ELECTRICAL CHARACTERISTICS - IN	ELECTRICAL CHARACTERISTICS - INPUT										
Rated power (kVA)	10 15 20 10 15 20 30 40										
Phase in/out		3/1				3/3					
Rated mains supply voltage				400 V 3	3ph + N						
Voltage tolerance	3	3Ph+N 400 V -15% +20% (up to -40% @70% of nominal load)									
Rated frequency 50/60 Hz = nominal frequency	from 40 Hz to 70 Hz										
Frequency tolerance				±1	0%						
Power factor (input at full load and rated voltage)				≥C	.99						
Total harmonic distortion (THDi)	≤4%			≤3%			≤ 2.5%	≤2%			
Max inrush current at start-up	< In (no overcurrent)										
Power walk-in(from battery to normal mode)			4 sec	onds (setta	able paran	neters)					

ELECTRICAL CHARAC	TEF	RISTI	CS - BYP	ASS						
Rated power (kVA)	_		10	15	20	10	15	20	30	40
Phase in/out				3/1				3/3		
Bypass frequency variation s	spee	d		1 Hz/s (settable up to 3 Hz/s)						
Bypass rated voltage				Nominal output voltage ±15%						
Bypass rated frequency							selectable)			
Bypass frequency tolerance				±8% in operation with generator						
ELECTRICAL CHARAC	TEF	RISTI	CS - INVE	ERTER						
Rated power (kVA)	_		10	15	20	10	15	20	30	40
Phase in/out				3/1	1			3/3	1	1
Rated output voltage (select	able)	208,	/220/230/2	240 V		208/	/220/230/2	240 V	
Output voltage tolerance						Static Dynamic:	: ±1% VEI-SS-11			
Rated output frequency							(selectable)			
Output frequency tolerance					±0.0	1% (on mai	ns power fa	ailure)		
Load crest factor						≥ 2	2.7			
Voltage harmonic distortion						< 1% with	linear load			
Overload tolerated by the	10	min	12.5	18.7	25	12.5	18.7	25	37.5	50
inverter kW	1	min	15	22.5	30	15	22.5	30	45	60
ELECTRICAL CHARAC	TEF	RISTI	CS - EFFI	ICIENCY						
Rated power (kVA)	ower (kVA) 10 15 20 10					15	20	30	40	
Phase in/out			3/1 3/3						1	
Double conversion efficiency (normal mode) - full load	/					Up to	95%			
Efficiency in Eco-Mode						99	9%			
ELECTRICAL CHARAC	TEF	RISTI	CS - ENV	IRONME	NT					
Rated power (kVA)	_		10	15	20	10	15	20	30	40
Phase in/out				3/1	1		<u> </u>	3/3	1	1
Storage temperatures				-	5 to +50 °C	(15 to 25	°C for bette	er battery lif	e)	
Working temperature				0	to +35 °C (Max +45		°C for bette Sn for a lim		fe)	
Maximum relative humidity (non-condensing)						95	5%			
Maximum altitude without de	eratii	ng				1000 m	(3300 ft)			
Degree of protection						IP20 (IP21	as option)			
Portability				AST	M D999-08	3, ASTM D-	880, AFNC	R NF H 00	-042	
Colour			ASTM D999-08, ASTM D-880, AFNOR NF H 00-042 RAL 7016 front E150HVF							
ELECTRICAL CHARAC	TEP	RIST <u>I</u>	CS - <u>BAT</u>	TERY						
Rated power (kVA)			10	15	20	10	15	20	30	40
Phase in/out				3/1				3/3		
Standard max. current		А				Į	5			
Battery connection in paralle configuration	el				UPS	work with c	listributed b	pattery		
(1) Condition apply.			1							

(1) Condition apply.

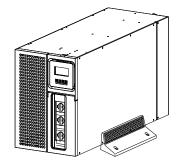
6.3 RECOMMENDED PROTECTIONS

RECOMMENDE	D PROTECTI	ON DEVI	CES - RE						
Rated power (kVA)		10	15	20	10	15	20	30	40
Phase in/out			3/1				3/3		
C curve circuit break	ker (A)	25	32	40	25	32	40	63	80
gG fuse (A)		25	32	40	25	32	40	63	80
RECOMMENDE	D PROTECTI	ON DEVI	CES - GEI	NERAL BY	(PASS ⁽¹⁾				
Rated power (kVA)		10	15	20	10	15	20	30	40
Phase in/out			3/1				3/3		
Max I ² t supported by (A ² s)	the bypass		45000			8000		150	000
Max lpk supported k	by the Bypass		2120			1200		17	00
C curve circuit break	ker (A)	63	100	125	25	32	40	63	80
gG fuse (A)		63	100	125	25	32	40	63	80
RECOMMENDE	D PROTECTI	ON DEVI	CES - INP	UT RESID	OUAL CUP	RRENT CII	RCUIT BF		
Rated power (kVA)		10	15	20	10	15	20	30	40
Phase in/out			3/1	I		<u> </u>	3/3	<u> </u>	<u> </u>
Input residual current breaker	t circuit				0.5 A S	elective			
RECOMMENDE	D PROTECTI		CES - OU	TPUT ⁽³⁾					
Rated power (kVA)		10	15	20	10	15	20	30	40
Phase in/out			3/1	1			3/3		1
Short-circuit in-	0 to 40 ms	120	177	237	40	59	79	117	156
verter current (A) (when AUX MAINS is not present)	40 to 100 ms	99	147	198	33	49	66	98	130
C curve circuit break	(er ⁽³⁾ (A)	≤8	≤ 10	≤ 16	≤ 3	≤ 4	≤ 6	≤ 8	≤ 10
B curve circuit break	(er ⁽³⁾ (A)	≤ 16	≤ 25	≤ 32	≤ 6	≤ 8	≤ 10	≤ 16	≤ 20
CABLES - MAXI	MUM CABLE	E SECTIO	N						
Rated power (kVA)		10	15	20	10	15	20	30	40
Phase in/out			3/1	1		1	3/3		
Rectifier terminals		25	25	25	25	25	25	50	50
Bypass terminals		50	50	50	25	25	25	50	50
Battery terminals		25	25	25	25	25	25	50	50
Output terminals		50	50	50	25	25	25	50	50

(1) Rectifier protection should only be considered in the event of separate inputs. The bypass protection is given by recommendation. When the bypass and rectifier inputs are combined (common input), the general input protection rating must be whichever is the highest (bypass or rectifier).

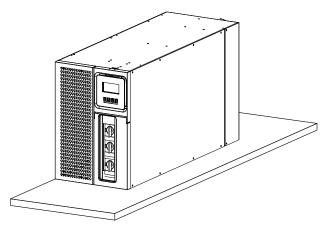
(2) Must be selective with residual current circuit breakers downstream of the UPS connected to the UPS output. If the bypass network is separate from the rectifier circuit, or in the event of parallel UPS configurations, use a single residual current circuit breaker upstream of the UPS.

(3) Selectivity of distribution after the UPS with inverter short-circuit current (short-circuit with AUX MAINS not present). The rating of the protection can be increased by "n" times downstream a parallel UPS system, with "n" equal to the number of parallel modules.



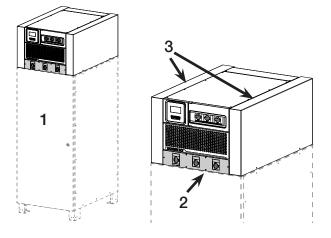
7. FLEX UPS

Choose the perfect configuration at the last minute - on-site - with Flex-UPS, the first device that adapts to the environment rather than


requiring the environment to adapt to the device. Three positioning choices are available depending upon the technical room space and the

type of battery frame. Flex-UPS delivers a unique freedom to get building UPS and battery solution.

Free standing configuration:


the unit can be installed in vertical position and kept in place with lateral support.

Wall mounted configuration:

Masterys BC+ Flex can be installed vertically or horizontally on a shelf; the display can be rotated accordingly

Solution compatible with existing shelves

Installation on top of battery cabinets:

The UPS can be installed on top of battery cabinet (Socomec or not) selecting the compatible kit.

The UPS is supplied as stand alone, according to the needs you can add:

- 1: battery cabinets
- 2: external manual bypass
- 3: lateral covers

8. REFERENCE STANDARDS AND DIRECTIVES

8.1 OVERVIEW

The construction of the equipment and choice of materials and components comply with all laws, decrees, directives and standards currently in force.

In particular, the equipment is fully compliant with all European Directives concerning CE marking.

LVD 2014/35/EU

Directive of the European Parliament and of the council of 26 February 2014 on the harmonisation of the laws of the Member States relating to the making available on the market of electrical equipment designed for use within certain voltage limits.

EMC 2014/30/EU

Directive of the European Parliament and of the council of 26 February 2014 on the harmonisation of the laws of the Member States relating to electromagnetic compatibility.

RoHS 2011/65/EU

Directive 2011/65 of the European parliament and of the council of 8 June 2011 on the restriction of the use of certain hazardous substances in electrical and electronic equipment

8.2 STANDARDS

8.2.1 SAFETY

EN 62040-1 Uninterruptible Power System (UPS) - Part 1: General and safety requirements

IEC 62040-1 Uninterruptible Power System (UPS) - Part 1: Safety requirements (CB scheme by TÜV)

8.2.2 ELECTROMAGNETIC COMPATIBILITY

EN 62040-2 Uninterruptible Power System (UPS) - Part 2: Electromagnetic compatibility (EMC) requirements (tested and verified by third party)

IEC 62040-2 Uninterruptible Power System (UPS) - Part 2: Electromagnetic compatibility (EMC) requirements

8.2.3 TEST AND PERFORMANCE

EN 62040-3 Uninterruptible Power System (UPS) - Part 3: Method of specifying the performance and test requirements

8.2.4 ENVIRONMENTAL

IEC 62040-4 Uninterruptible Power System (UPS) - Part 4: Environmental aspects - Requirements and reporting

8.3 SYSTEM AND INSTALLATION GUIDELINES

When carrying out electrical installation, all the above standards must be observed. All national and international standards (e.g IEC60364) applicable to the specific electrical installation including batteries must be observed. For further information refer to 'Technical specifications' chapter in the user manual.

ELITE UPS: a mark of efficiency

Socomec, as CEMEP UPS manufacturer member, has signed a Code of Conduct put forward by the Joint Research Centre of the European Commission (JRC), to ensure the protection of critical applications and processes ensuring 24/7 continuous high quality supply. The JRC commits to mitigating energy losses and gas emissions caused by UPS equipment, therefore maximising UPS efficiency.

MASTERYS BC+ From 60 to 160 kVA

(j)

Socomec Resource Center To download, brochures, catalogues and technical manuals

OBJECTIVES

The aim of these specifications is to provide:

- The information required to choose the right uninterruptible power supply for a specific application.
- The information required to prepare the system and installation site.

The specifications are intended for:

- Installation engineers.
- Design engineers.
- Engineering consultants.

INSTALLATION REQUIREMENTS AND PROTECTION

Connection to the mains power supply and to the load(s) must be made using cables of suitable size, in accordance with current standards. If not already present, an electrical distribution panel which can isolate the network upstream of the UPS must be installed. This electrical distribution panel must be equipped with a protection device (or two, if there is a separate bypass line) of an appropriate rating for the power drawn at full load.

For detailed information, see the installation and operating manual.

MASTERYS BC+ From 60 to 160 kVA

1. ARCHITECTURE

1.1 RANGE

MASTERYS BC+ is a full range of high performing UPS system designed to:

- ensure 24/7/365 availability and business continuity for mission critical applications
- avoid data losses and downtime of company operations,
- reduce the electrical infrastructure's total cost of ownership,
- adopt a sustainable development approach.

MASTERYS BC+								
Rated power (kVA)	60	80	100	120	160			
MASTERYS BC+ 3/3	•	•	•	٠	•			
Matrix table for model and kVA p	Matrix table for model and kVA power rating							

MASTERYS BC+ has been specifically designed to meet the demands of loads in specific application contexts, in order to optimise the features of the product and facilitate its integration within the system.

2. FLEXIBILITY

2.1 POWER RATINGS FROM 60 TO 160 KVA

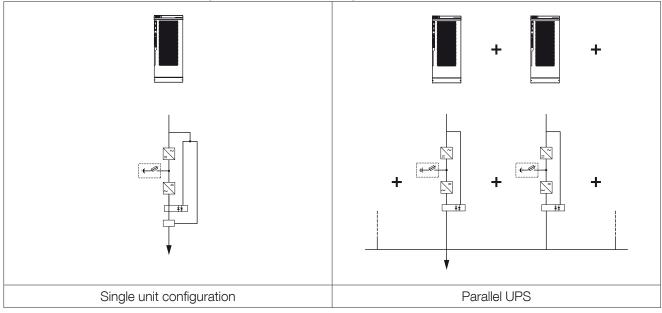
The equipment has been designed with a minimum direct and indirect footprint (the actual space occupied by the unit and the space required around it for maintenance, ventilation and access to the operating mechanisms and communication devices).

The detailed design also provides easy access for maintenance and installation.

All of the control mechanisms are located on the front at the bottom and communication interfaces are on the inside of the door.

The air inlet is on the front, with outflow from the rear side; this means other equipment or external battery enclosures can be placed alongside the UPS unit.

DIMENSIONS	_	-	
Masterys BC+	Width (W) [mm]	Depth (D) [mm]	Height (H) [mm]
MASTERYS BC+ 60 to 80 kVA	444	800	1400
MASTERYS BC+ 60 to 80 kVA with internal battery	600	855	1930


DIMENSIONS								
Width (W)	Depth (D)	Height (H) [mm]						
600	855	1400						
600	855	1930						
	[mm] 600	[mm] [mm] 600 855						

2.2 FLEXIBLE BACK-UP TIME

Different extended back-up times are possible by using external battery cabinets, optionally with a enhanced battery charger Selection of the back-up time is flexible thanks to the wide range of battery string voltages.

2.3 HORIZONTAL PARALLEL

MASTERYS BC+ offers 2 UPS configurations in the same range.

MASTERYS BC+ From 60 to 160 kVA

3. STANDARD FEATURES AND OPTIONS

Availa	Availability						
	Factory-installed option						
0	Available as option (installation on site)						
STD	Standard feature						

	60-80) kVA	100 100	100	
MASTERYS BC+	External battery	Internal battery	100-120 kVA	160 kVA	Notes
Battery Option					
Additional charger	-	•0	•0	•0	Kit for Rectifier Neutral creation
Communication Option	<u>I</u>	1	<u> </u>		
ACS card (Automatic Cross Synchronisation)	•0	•0	•0	•0	
ADC+SL card (Advanced Dry Contact + Serial Link)	0	0	0	0	
External temperature sensor	0	0	0	0	ADC+SL card
Remote touchscreen display	0	0	0	0	▲ ● ADC+SL card
BACnet/IP interface card	0	0	0	0	
Modbus TCP interface card	0	0	0	0	
Net Vision card (professional WEB/SNMP interface for UPS monitoring)	0	0	0	0	
EMD (Environmental Monitoring Device: temperature, humidity, 2 dry contacts)	0	0	0	0	Net Vision card
PROFIBUS protocol interface	0	0	0	0	▲ ● ADC+SL card
Electrical Option	<u>I</u>	<u> </u>	<u> </u>		
Parallel card	•0	•0	•0	•0	
Kit for Parallel configuration (C7)	-	-	•0	•0	Parallel card
External isolation Transformer	-	-	0	-	
IMD (insulation monitoring device)	-	-	0	-	External isolation Transformer
External maintenance bypass	0	0	0	-	
Kit for TN-C / Neutral-Ground connection	0	0	•0	•0	Kit for Rectifier Neutral creation
Internal Backfeed isolation device	•	•	•	•	
Kit For Common Mains	0	0	0	0	
Kit for Rectifier Neutral creation	•	•	•	•	 Kit for TN-C / Neutral-Ground connection Kit For Common Mains Additional charger
Mechanical Option					
Anti vermin protection	•	STD	•	•	
Kit for IP21	0	0	0	0	
Kit for Lateral Cover	0	0	-	-	

Required option

O Incompatible option

4. SPECIFICATIONS

4.1 INSTALLATION PARAMETERS

INSTALLATION PARAM	IENTERS							
Rated power (kVA)			60	80	100	120	160	
Phase in/out				3/3				
Active power		kW	60	72	90	108	144	
Rated/maximum rectifier inp 62040-3)	ut current (EN	А	93/110	111/128	138/165	166/201	222/268	
Rated bypass input current	1)	А	96	128	160	191	255	
Inverter output current @ 40	0 V Pn	А	87	115	145	174	232	
Recommended air flow capa	acity	m³/h	480	600	720	960	1320	
Acoustic noise @ 70% Pn		dBA	53 ext. batt.	/ 55 int. batt.	5	63	57	
		W	3120	3800	4700	5600	7500	
Power dissipation in nomina	conditions (2)	kcal/h	2683	3267	4041	4815	6449	
		BTU/h	10646	12965	16037	19108	25591	
		W	3540	4300	5200	6200	8300	
Power dissipation (max) in the conditions (3)	ne worst	kcal/h	3044	3697	4471	5331	7137	
		BTU/h	12079	14671	17743	21155	28321	
Dimensions	Width	mm	444 ,	/ 600		600		
(for 60-80 Models:	Depth	mm	800 /	/ 855		855		
external/internal batteries)	Height	mm	1400,	/ 1930	14	.00	1930	
	Operational	mm			Rear ≥ 200			
Single unit Clearances	Maintenance	mm		Front	t ≥ 1500; Top ≥	≥ 800		
Weight		kg	151	157	220	232	333	
Weight with internal battery		kg	290	-814		-		

1. Considering nominal bypass current calculated @ 400 V, considering a continuos overload of 110%.

2. Considering nominal input current (400 V, battery charged) and rated output active power.

3. Considering maximum input current (low input voltage, battery charged) and rated output active power.

4.2 ELECTRICAL CHARACTERISTICS

ELECTRICAL CHARACTERISTICS - RECTIFIER INPUT									
Rated power (kVA)	60 80 100 120 160								
Rated mains supply voltage			400 V 3ph + N						
Voltage tolerance		340	to 480 V (-15 +2	20%)					
Voltage tolerance at derated load	up to 240 V @ 70% of nominal active load								
Rated frequency	from 40 Hz to 70 Hz								
Frequency tolerance			±10%						
Power factor (at full load and rated voltage)			≥ 0.99						
Total harmonic distortion (THDi)	≤ 2%								
Max inrush current at start-up	< In								
Power walk-in (from battery to normal mode)		4 secor	nd (settable para	ameters)					

ELECTRICAL CHARACTERISTICS - BYPASS									
Rated power (kVA)	60	80	100	120	160				
Bypass frequency variation speed		1 Hz/s (settable up to 3 Hz/s)							
Bypass rated voltage	Nominal output voltage $\pm 15\%$ (selectable $\pm 5-\pm 20\%$)								
Bypass rated frequency			50/	60 Hz (selecta	ble)				
Bypass frequency tolerance			±2% (config	gurable from ± 1	% to ±10%)				
10 min		109	145	181	218	290			
Bypass current overload (A)	1 min	130	174	217	261	348			

ELECTRICAL CHARACTERISTIC	ELECTRICAL CHARACTERISTICS - INVERTER									
Rated power (kVA)		60	80	100	120	160				
Rated output voltage			360/380	/400/415 V (se	electable)					
Output voltage tolerance		Static: ±1% Dynamic: VFI-SS-11 (EN 62040-3 compliant)								
Rated output frequency			50/	60 Hz (selecta	ble)					
Output frequency tolerance	±0.01% on mains power failure									
Load crest factor				≥ 2.7						
Voltage total harmonic distortion THDV			< 1	% with linear lo	bad					
	10 min	75	90	112.5	135	180				
Inverter overload (kW)	5 min	79.2	95	118.8	142.6	190				
	90	108	135	162	216					
Short-circuit inverter current (A) (when	0 to 40 ms	234	273	351	429	574				
AUX MAINS is not present)	40 to 100 ms	196	228	294	358	478				

ELECTRICAL CHARACTERISTICS - EFFICIENCY								
Rated power (kVA)	60	80	100	120	160			
Double conversion efficiency	up to 95%							
EcoMode efficiency	99.4%							

ELECTRICAL CHARACTERISTICS - ENVIRONMENT							
Rated power (kVA)	60	80	100	120	160		
Storage temperatures	-{	-5 to +50 °C (15 to 25 °C for better battery life)					
Working temperature	0 to +40 °C 0 to +40 °C ⁽¹⁾ (15 to 25 °C for better battery life) Max +45°C @ 70% Sn for a limited time						
Maximum relative humidity (non-condensing)	95%						
Maximum altitude without derating	1000 m (3300 ft)						
Degree of protection	IP20 (IP21 as option)						
Colour	RAL 7016 (door metallized grey E150HVF)						

ELECTRICAL CHARACTERISTICS - BATTERY							
Rated power (kVA)	60	80	100	120	160		
Standard max. recharge current	А	10		16		32	
Battery connection in parallel configuration		UPS work with distributed battery					

(1) Condition apply.

4.3 RECOMMENDED PROTECTIONS

RECOMMENDED PROTECTION DEVICES - RECTIFIER (1)							
Rated power (kVA)		60	80	100	120	160	
C curve circuit breake	А	125	160	250	250	315	
gG fuse	А	125	160	250	250	315	

RECOMMENDED PROTECTION DEVICES - GENERAL BYPASS ⁽²⁾						
Rated power (kVA)		60	80	100	120	160
Maximum I ² t supported by the bypass	A²s		400000			
Max lpk supported by the Bypass	А		5000			
Conditional short circuit current rating (Icc)	kA	10				
C curve circuit breaker	А	125 160 250			400	
gG fuse	А	125	160	25	50	400

RECOMMENDED PROTECTION DEVICES - INPUT RESIDUAL CURRENT CIRCUIT (RCD) BREAKER ⁽³⁾						
Rated power (kVA)		60	80	100	120	160
Input residual current circuit breaker	А		0.8	5 A Selective type	B	

RECOMMENDED PROTECTION DEVICES - OUTPUT ⁽⁴⁾						
Rated power (kVA)		60	80	100	120	160
C curve circuit breaker (3)	А	≤ 16	≤ 20	≤ 25	≤ 32	≤ 40
B curve circuit breaker (3)	А	≤ 32	≤ 40	≤ 50	≤ 63	≤ 80

CABLES - MAXIMUM CABLE SECTION (5)						
Rated power (kVA)	60 - 80 External battery	60 - 80 Internal battery	100	120	160	
Rectifier terminals (4x)		bus bar with			la va la av vitta	
Bypass terminals (4x)	50 mm ²	holes ø 8 mm 70 mm²	bus bar with h 2x120 mm² (fle	noles ø 10 mm	bus bar with holes ø 10 mm 2x150 mm ²	
Output terminals (4x)		(flexible cable and rigid		cable)	(flexible cable and rigid cable)	
Battery terminals (3x)	95 mm ^{2 (6)}	cable)				

- 1. Rectifier protection should only be considered in the event of separate inputs. Recommended values to avoid unwanted tripping with UPS at full power. When the bypass and rectifier inputs are combined (common input), the general input protection rating must be the highest of the two (bypass or rectifier).
- 2. Recommended values to avoid unwanted tripping with UPS at full power. A current limiting device has to be used in case of maximum i²t and lpk of the SCR by-pass is exceeded. When the bypass and rectifier inputs are combined (common input), the general input protection rating must be the highest of the two (bypass or rectifier).
- 3. RCD is not necessary when the UPS is installed in a TN-S system. RCD is not permitted on TN-C systems. If an RCD is required a B-type should be used. Must be coordinate with residual current circuit breakers downstream of the UPS connected to the UPS output. If the bypass network is separate from the rectifier circuit, or in the event of parallel UPSs, use a single residual current circuit breaker upstream of the UPS.
- 4. Protection tripping downstream of the UPS with inverter short circuit current (Worst case = AUX MAINS not present). In the Normal case, with AUX MAINS present, fault clearing is determined by the Mains short-circuit capability. The rating of the protection can be increased "n" times downstream of a parallel UPS system, with "n" equal to the number of parallel UPS units.
- 5. Use cable with tin-plated eyelets for the connection.
- 6. Not available for internal battery version.

5. REFERENCE STANDARDS AND DIRECTIVES

5.1 OVERVIEW

The equipment, installed, used and serviced in accordance with its intended use, its regulations and standards, its manufacturer instructions and rules, is in compliance with the relevant Union harmonisation legislation:

LVD 2014 / 35 / EU

DIRECTIVE 2014/35/EU OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of 26 February 2014, on the harmonisation of the laws of the Member States relating to the making available on the market of electrical equipment designed for use within certain voltage limits.

EMC 2014 / 30 / EU

DIRECTIVE 2014/30/EU OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of 26 February 2014, on the harmonisation of the laws of the Member States relating to electromagnetic compatibility.

RoHS 2011/65/EU

Directive 2011/65 of the European parliament and of the council of 8 June 2011 on the restriction of the use of certain hazardous substances in electrical and electronic equipment

5.2 STANDARDS

5.2.1 SAFETY

EN 62040-1 Uninterruptible Power System (UPS) - Part 1: General and safety requirements IEC 62040-1 Uninterruptible Power System (UPS) - Part 1: Safety requirements (CB scheme by TÜV)

5.2.2 ELECTROMAGNETIC COMPATIBILITY

EN 62040-2 Uninterruptible Power System (UPS) - Part 2: Electromagnetic compatibility (EMC) requirements IEC 62040-2 Uninterruptible Power System (UPS) - Part 2: Electromagnetic compatibility (EMC) requirements

5.2.3 TEST AND PERFORMANCE

EN 62040-3 Uninterruptible Power System (UPS) - Part 3: Method of specifying the performance and test requirements

5.2.4 ENVIRONMENTAL

IEC 62040-4 Uninterruptible Power System (UPS) - Part 4: Environmental aspects - Requirements and reporting

5.3 SYSTEM AND INSTALLATION GUIDELINES

When carrying out electrical installation, all the above standards must be observed. All national and international standards (e.g IEC60364) applicable to the specific electrical installation including batteries must be observed. For further information refer to 'Technical specifications' chapter in the user manual.

ELITE UPS: a mark of efficiency

Socomec, as CEMEP UPS manufacturer member, has signed a Code of Conduct put forward by the Joint Research Centre of the European Commission (JRC), to ensure the protection of critical applications and processes ensuring 24/7 continuous high quality supply. The JRC commits to mitigating energy losses and gas emissions caused by UPS equipment, therefore maximising UPS efficiency.

DELPHYS BC 200 to 300 kVA

Socomec Resource Center To download, brochures, catalogues and technical manuals

OBJECTIVES

The aim of these specifications is to provide:

- the information required to choose the right uninterruptible power supply for a specific application.
- the information required to prepare the system and installation site.

The specifications are intended for:

- installation engineers.
- design engineers.
- engineering consultants.

INSTALLATION REQUIREMENTS AND PROTECTION

Connection to the mains power supply and to the load(s) must be made using cables of suitable size, in accordance with current standards. If not already present, an electrical control station which can isolate the network upstream of the UPS must be installed. This electrical control station must be equipped with a circuit breaker (or two, if there is a separate bypass line) of an appropriate rating for the power draw at full load.

If an external manual bypass is required, only the model supplied by the manufacturer must be installed.

We recommend fitting two metres of unanchored flexible cable between the UPS output terminals and the cable anchor (wall or cabinet). This makes it possible to move and service the UPS.

For detailed information, see the installation and operating manual.

1. ARCHITECTURE

1.1 RANGE

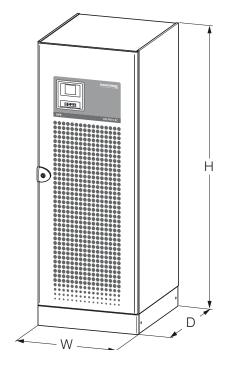
DELPHYS BC is a full range of high performing UPS designed to protect critical and sensitive appliances in "business critical" applications such as data centres.

MODELS				
Rated power (kVA)	200	300		
DELPHYS BC 3/3 • •				
Matrix table for model and kVA power rating				

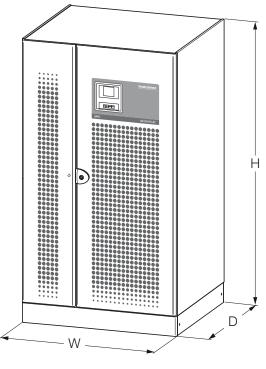
Each range has been specifically designed to meet the demands of loads in specific application contexts, in order to optimise the features of the product and to facilitate its integration within the system.

2. FLEXIBILITY

2.1 POWER RATINGS FROM 200 TO 300 kVA


The equipment has been designed with a minimum direct and indirect footprint (the actual space occupied by the unit and the space required around it for maintenance, ventilation and access to the operating mechanisms and communication devices).

The careful design also provides easy access for maintenance and installation.

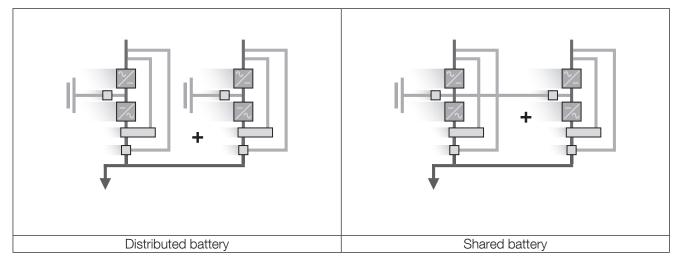

All of the control mechanisms are located in the front bottom side, while the communication interfaces in the internal upper side of the door.

The air inlet is on the front, with outflow from the upper side; this means other equipment or external battery enclosures can be placed alongside the UPS unit.

DIMENSIONS							
	Width (W) [mm]	Depth (D) [mm]	Height (H) [mm]				
DELPHYS BC 200 kVA	700	800	1930				
DELPHYS BC 300 kVA	1000	950	1930				

DELPHYS BC 200 kVA

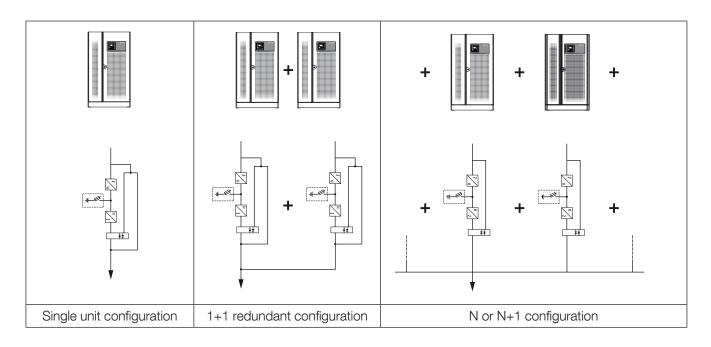
DELPHYS BC 300 kVA



2.2 BATTERY MANAGEMENT

Available with distributed batteries, DELPHYS BC allows to optimise the batteries size thanks to a shared battery operation. This reduces the overall system footprint, the weight of the required batteries, the battery monitoring system, the amount of wiring needed and the amount of lead.

To guarantee maximum back-up time availability and battery life, DELPHYS BC includes:


- EBS (Expert Battery System), smart battery charging management.
- Distributed or shared battery for energy storage optimization on parallel systems.

2.3 HORIZONTAL AND VERTICAL PARALLEL

DELPHYS BC offers 3 "configurations" of UPS in the same range:

- Stand alone (Single unit configuration with rectifier, battery, inverter, static bypass and maintenance bypass)
- 1+1 redundant system (with built-in maintenance by-pass in each unit)
- Parallel system up to 6 modules working in parallel (n or n+1)

3. STANDARD AND OPTIONS

3.1 STANDARD ELECTRICAL FEATURES

- Dual input mains.
- Integrated maintenance bypass (single and 1+1 redundant units).
- Backfeed protection: detection circuit.
- EBS (Expert Battery System) for battery management.
- Battery temperature sensor.

3.2 ELECTRICAL OPTIONS

- External battery cabinet.
- External temperature sensor.
- Additional battery chargers.
- Shared battery.
- Galvanic isolation transformer.
- Parallel kit.
- ACS synchronization system.

3.3 STANDARD COMMUNICATION FEATURES

- User-friendly 7' touch-screen multilingual color graphic display.
- 2 Com-Slots for communication options.
- USB port to download UPS report and log file.
- Ethernet port for service purpose.

3.4 COMMUNICATION OPTIONS

- Dry-contact interface (configurable volatge-free contacts).
- MODBUS RTU RS485 or TCP.
- PROFIBUS / PROFINET gateway.
- BACnet/IP interface.
- NET VISION: professional WEB/SNMP Ethernet interface for secure UPS monitoring and remote automatic shutdown.
- NET VISION EMD: Environment Temperature and Humidity sensor with 2 inputs.
- Remote View Pro supervision software.
- IoT Gateway for Socomec cloud services and SoLive mobile app.
- Remote touch-screen panel.

3.5 REMOTE MONITORING AND CLOUD SERVICES

- SoLink: Socomec 24/7 Remote Monitoring Service connecting your installation to the nearest Socomec Service Centre.
- SoLive: Mobile app taking the surveillance of all your UPS systems into your smartphone.

4. SPECIFICATIONS

4.1 INSTALLATION PARAMETERS

INSTALLATION PARAMENTE	RS		
Rated power (kVA)		200	300
Phase in/out		3/	′3
Active power (kW)	kW	180	270
Rated/maximum rectifier input current (A)	А	278/340 ⁽¹⁾	417/436 ⁽¹⁾
Rated bypass input current	А	290	433
Inverter output current @ 400 V P/N	А	290	433
Maximum air flow	m³/h	2250	2700
Sound level	dB(A)	< 68	< 71
	W	11200	17000
Power dissipation in nominal conditions ⁽²⁾	kcal/h	9630	14617
	BTU/h	38215	58006
	W	13100	17700
Power dissipation (max) in the worst conditions ⁽³⁾	kcal/h	11263	15219
	BTU/h	44699	60394
	W (mm)	700	1000
Dimensions	D (mm)	800	950
	H (mm)	1930	1930
Weight	kg	500	830

(1) At minimum input mains

(2) Considering nominal input current (400 V, battery charged) and rated output active power (PF 0.9).

(3) Considering maximum input current (low input voltage, battery recharge) and rated output active power (PF 0.9).

4.2 ELECTRICAL CHARACTERISTICS

ELECTRICAL CHARACTERISTICS - RECTIFIER ⁽¹⁾ INPUT					
Rated power (kVA)	200	300			
Rated mains supply voltage	400 V 3ph				
Voltage tolerance	240 to 480 V ⁽²⁾				
Rated frequency	50/60 Hz (selectable)				
Frequency tolerance	±10%				
Power factor (input at full load and rated voltage)	≥ 0.99				
Total harmonic distortion (THDi)	< 3%				
Max inrush current at start-up	<in (no="" overcurrent)<="" td=""></in>				

(1) IGBT rectifier. (2) Conditions apply.

ELECTRICAL CHARACTERISTICS - I	BYPASS	6		
Rated power (kVA)		200	300	
Bypass frequency variation speed		1.5 Hz/s (settak	ble up to 3 Hz/s)	
Bypass rated voltage		Nominal outpu	t voltage ±15%	
Bypass rated frequency		50/60 Hz	(selectable)	
Bypass frequency tolerance		from ±1% to ±8% (oper	ation with generator unit)	
ELECTRICAL CHARACTERISTICS - I	NVERT	ER		
Rated power (kVA)		200	300	
Rated output voltage (selectable)		380/40	0/415 V	
Output voltage tolerance			:: ±1% VFI-SS-111	
Rated output frequency (selectable)		50/60 Hz (selectable)		
Output frequency tolerance		±0.01% on mains power failure		
Load crest factor		3:1		
Voltage harmonic distortion		< 1.5% with linear load		
Overload tolerated by the inverter - 25 °C	1 min	270 kW	311 kW	
ELECTRICAL CHARACTERISTICS - E	EFFICIE	NCY		
Rated power (kVA)		200	300	
Double conversion efficiency (normal mode) -	full load	up to 95%		
ELECTRICAL CHARACTERISTICS - E	ENVIRO	NMENT		
Rated power (kVA)		200	300	
Storage temperatures		-5 to +45 °C (23 to 113 °F) (15 to 25 °C for better battery life)		
Working temperature		0 to +40 ⁽¹⁾ °C (32 to 104 °F) (15 to 25 °C for better battery life)		
Maximum relative humidity (non-condensing)		95%		
Maximum altitude without derating		1000 m (3300 ft)		
Degree of protection		IP20		
Colour		RAL 7012, silver	grey frontal door	

(1) Conditions apply.

4.3 RECOMMENDED PROTECTIONS

RECOMMENDED PR	OTECTION DEVICES -		
Rated power (kVA)		200	300
D curve circuit breaker (A)		400	630
gG fuse (A)		400	630
RECOMMENDED PRO	OTECTION DEVICES -	GENERAL BYPASS ⁽¹⁾	
Rated power (kVA)		200	300
Semiconductors characteristics	l²t (A²s)	320000	
	ls/c (A peak)	8000	
D curve circuit breaker (A)		400	630
gG fuse (A)		400	630
RECOMMENDED PRO	OTECTION DEVICES -	INPUT RESIDUAL CURRENT (
Rated power (kVA)		200	300
Input residual current circuit breaker		3 A	
RECOMMENDED PR	OTECTION DEVICES -	OUTPUT ⁽³⁾	
Rated power (kVA)		200	300
Short-circuit inverter current (A) - (0 to 100 ms) (when AUX MAINS is not present)		720 A	900
C curve circuit breaker ⁽³⁾ (A)		≤ 63 A	≤ 80
B curve circuit breaker ⁽³⁾ (A)		≤ 125 A	-
High-speed fuse ⁽³⁾ (A)		≤ 160 A	
CABLES CONNECTIO	ON - MAXIMUM CAPA	BILITY PER POLE	
Rated power (kVA)		200	300
Rectifier terminals		2 x 150 mm ²	2 x 240 mm ²
Bypass terminals		2 x 150 mm ²	2 x 240 mm ²
Battery terminals		2 x 240 mm ²	2 x 240 mm ²
Output terminals		2 x 150 mm ²	2 x 240 mm ²

(1) Rectifier protection should only be considered in the event of separate inputs. The bypass protection is given by recommendation. When the bypass and rectifier inputs are combined (common input), the general input protection rating must be the highest of both (bypass or rectifier).

(2) Must be selective with residual current circuit breakers downstream of the UPS connected to the UPS output. If the bypass network is separate from the rectifier circuit, or in the event of parallel UPS, use a single residual current circuit breaker upstream of the UPS.

(3) Selectivity of distribution after the UPS with inverter short-circuit current (short-circuit with AUX MAINS not present). The rating of the protection can be increased by "n" times downstream a parallel UPS system, with "n" equal to the number of parallel modules.

5. REFERENCE STANDARDS AND DIRECTIVES

5.1 OVERVIEW

The equipment, installed, used and serviced in accordance with its intended use, its regulations and standards, its manufacturer instructions and rules, is in compliance with the relevant Union harmonisation legislation:

LVD 2014 / 35 / EU

DIRECTIVE 2014/35/EU OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of 26 February 2014, on the harmonisation of the laws of the Member States relating to the making available on the market of electrical equipment designed for use within certain voltage limits.

EMC 2014 / 30 / EU

DIRECTIVE 2014/30/EU OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of 26 February 2014, on the harmonisation of the laws of the Member States relating to electromagnetic compatibility.

RoHS 2011/65/EU

Directive 2011/65 of the European parliament and of the council of 8 June 2011 on the restriction of the use of certain hazardous substances in electrical and electronic equipment

5.2 STANDARDS

5.2.1 SAFETY

EN 62040-1 Uninterruptible Power System (UPS) - Part 1: General and safety requirements

IEC 62040-1 Uninterruptible Power System (UPS) - Part 1: Safety requirements

5.2.2 ELECTROMAGNETIC COMPATIBILITY

EN 62040-2 Uninterruptible Power System (UPS) - Part 2: Electromagnetic compatibility (EMC) requirements IEC 62040-2 Uninterruptible Power System (UPS) - Part 2: Electromagnetic compatibility (EMC) requirements

5.2.3 ENVIRONMENTAL

IEC 62040-4 Uninterruptible Power System (UPS) - Part 4: Environmental aspects - Requirements and reporting

5.3 SYSTEM AND INSTALLATION GUIDELINES

When carrying out electrical installation, all the above standards must be observed. All national and international standards (e.g. IEC60364) applicable to the specific electrical installation including batteries must be observed. For further information refer to 'Technical specifications' chapter in the user manual.

ELITE UPS: a mark of efficiency

Socomec, as CEMEP UPS manufacturer member, has signed a Code of Conduct put forward by the Joint Research Centre of the European Commission (JRC), to ensure the protection of critical applications and processes ensuring 24/7 continuous high quality supply. The JRC commits to mitigating energy losses and gas emissions caused by UPS equipment, therefore maximising UPS efficiency.

MASTERYS GP4

10 to 40 kVA/kW

Socomec Resource Center To download, brochures, catalogues and technical manuals

OBJECTIVES

The aim of these specifications is to provide:

- the information required to choose the correct uninterruptible power supply for a specific application.
- the information required to prepare the system and installation site.

The specifications are intended for:

- installation engineers.
- design engineers.
- engineering consultants.

INSTALLATION REQUIREMENTS AND PROTECTION

Connection to the mains power supply and load(s) must be implemented using cables of suitable size, in accordance with current standards. If not already present, an electrical control station which can isolate the network upstream of the UPS must be installed. This electrical control station must be equipped with a circuit breaker (or two, if there is a separate bypass line) of an appropriate rating for the power drawn at full load.

If an external manual bypass is required, only the model supplied by the manufacturer must be installed.

We recommend fitting two metres of unanchored flexible cable between the UPS terminals and the cable anchor (wall or cabinet). This makes it possible to move and service the UPS.

For detailed information, see the installation and operating manual.

MASTERYS GP4 10 to 40 kVA/kW

1. ARCHITECTURE

1.1 RANGE

MASTERYS GP4 is a full range of high performing UPS systems designed to:

- ensure 24/7/365 availability and business continuity for datacentre infrastructure,
- avoid data losses and downtime of company operations,
- reduce the electrical infrastructure's total cost of ownership,
- adopt a sustainable development approach.

MODELS					
Rated power (kVA)	10	15	20	30	40
MASTERYS GP4 3/1	•	•	•		
MASTERYS GP4 3/3	•	•	•	•	٠

Matrix table for model and kVA power rating

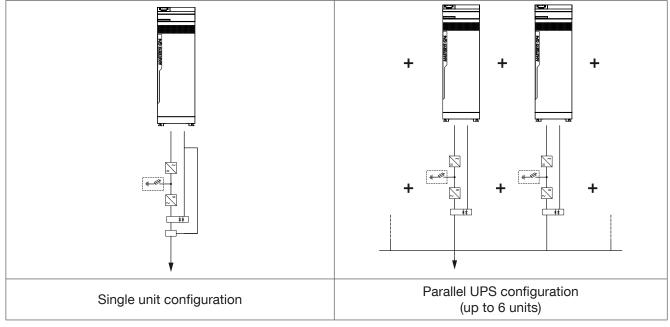
Each family has been specifically designed to meet the demands of loads in specific application contexts, in order to optimise product features and facilitate integration within the system.

2. FLEXIBILITY

2.1 POWER RATINGS FROM 10 TO 40 kVA/kW

DIMENSIONS				
Cabinet type		Width (W) [mm]	Depth (D) [mm]	Height (H) [mm]
	S4	444	800	800
	M4	444	800	1400

The equipment has been designed with a minimum net and gross footprint (the actual space occupied by the unit and the space required around it for maintenance, ventilation and access to operating mechanisms and communication devices).


All of the control mechanisms and communication interfaces are located in the upper front section.

The intelligent design also provides easy access for maintenance and installation.

The air inlet is on the front, with outflow to the rear.

2.2 PARALLEL

MASTERYS GP4 enables 2 configurations of UPS systems in the same range.

2.3 RELIABILITY

Reliability is the most critical factor for any UPS solution designed to protect and manage the continuity of activities and services.

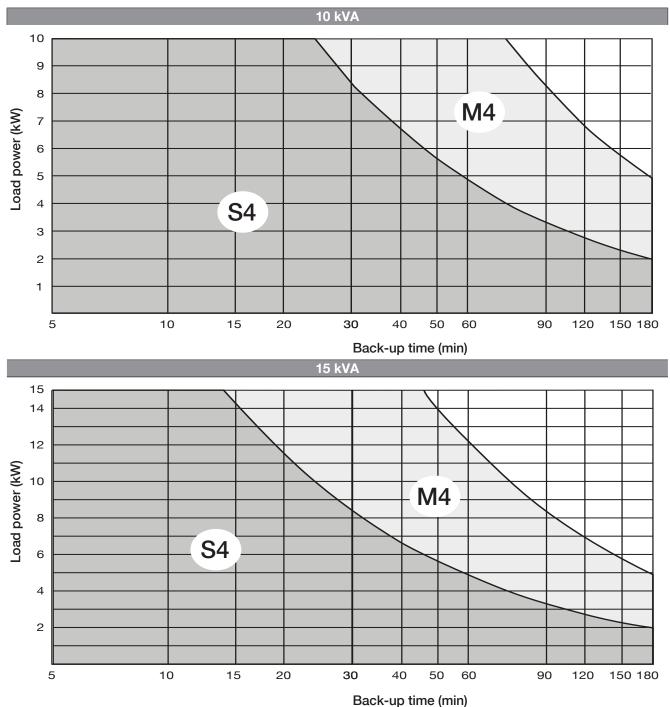
MASTERYS GP4 MTBF exceeds the market standard, and Socomec officially declares its MTBF data.

2.4 SEISMIC RESISTANT

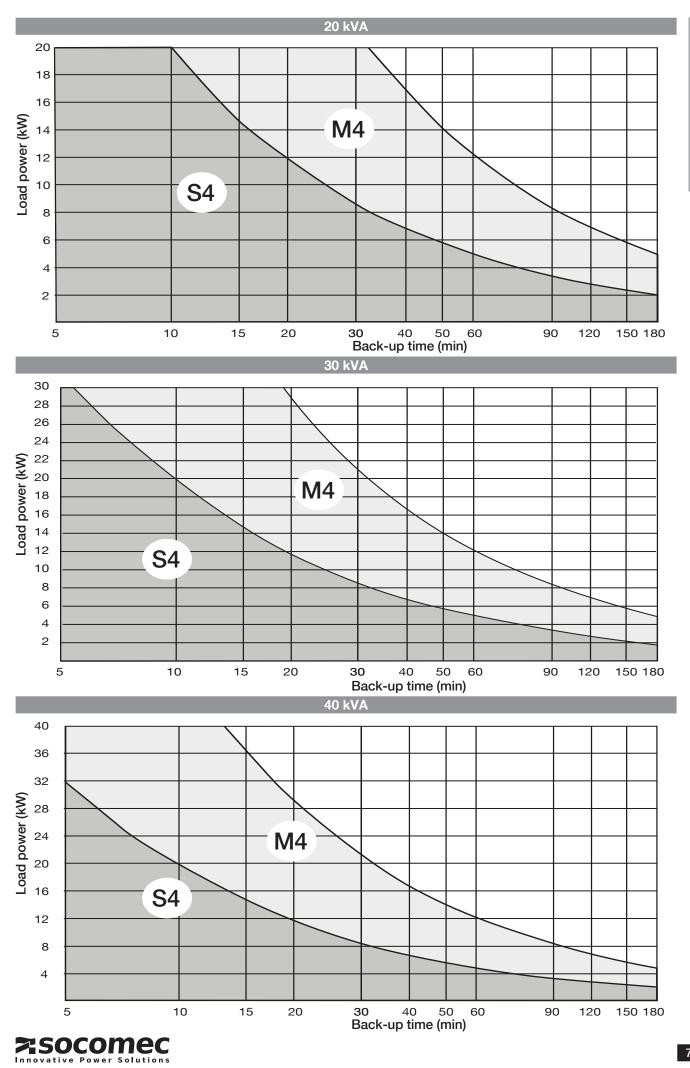
The 4th generation MASTERYS units (with SEISMIC option installed) have successfully passed extensive tests to verify resistance to withstand seismic events.

Tests have been performed by accredited laboratories according to the standards covering zones with the highest level of seismic activity: Zone 4.

The test requires that the UPS system, working at full load and provided with floor fixing devices, must resist the stresses and accelerations defined by the test protocol. When the test has been completed, the UPS must be intact and working perfectly.


2.5 FLEXIBLE BACK-UP TIME

Different back-up times are possible by using models with internal battery or external battery cabinets.


Batteries are installed on acid-proof trays and connected by means of polarised connectors to facilitate their maintenance. To guarantee maximum back-up time availability and battery life, the MASTERYS GP4 series is equipped with an EBS (Expert Battery System).

For external battery cabinets use size S4.

For internal batteries, use the following charts to select the model (S4/M4) in relation to power and back-up time.

3. STANDARD FEATURES AND OPTIONS

Availa	bility
	Factory-installed option

O Available as option

FEATURES	MASTER	RYS GP4		
	10-15-20 kVA	30-40 kVA		Notes
Battery Option				
Additional charger	•0	• 0		Kit for Rectifier Neutral creation
Communication Option				
ACS card (Automatic Cross Synchronisation)	•0	•0		
ADC+SL card (Advanced Dry Contact + Serial Link)	0	0		
External temperature sensor	0	0		ADC+SL card
7' touch-screen colour graphic display	٠	•		
Remote touchscreen display	0	0		ADC+SL card
BACnet/IP interface card	0	0		
Modbus TCP interface card	0	0		
Net Vision card (professional WEB/SNMP interface for UPS monitoring)	0	0		
EMD (Environmental Monitoring Device: temperature, humidity, 2 dry contacts)	0	0		D Net Vision card
Electrical Option				
Parallel card	• 0	•0		
External maintenance bypass	0	0		
Kit for TN-C / Neutral-Ground connection	0	0		
Internal Backfeed isolation device	•	٠		
Kit For Common Mains	0 (3/3)	0		
Kit for Rectifier Neutral creation	٠	٠	Δ.	 Kit for TN-C / Neutral-Ground connection Kit For Common Mains Additional charger
Redundant Bypass Ventilation	•	•		
Cold Start	•	•		
Mechanical Option				
Ramp for unloading UPS	0	0		
Kit for Front and Lateral Cover	0	0		
Kit for IP21	0	0		
Seismic adaptation	•	•		

Required option

S Incompatible option

4. SPECIFICATIONS - MASTERYS GP4

4.1 INSTALLATION PARAMETERS

INSTALLATION P	ARAMETER	S									
Rated power (kVA)			10	15	20	10	15	20	30	40	
Phase in/out				3/1				3/3			
Active power		kW	10	15	20	10	15	20	30	40	
Rated/maximum recti current (EN 62040-3)	fier input	A	15/22	23/30	31/39	15/22	23/30	31/39	46/55	62/73	
Rated bypass input c	urrent	А	48	72	96	16	24	32	48	64	
Inverter output curren	t @ 230 V	Α	43	65	87	14	22	29	43	58	
Maximum air flow		m3/h		240							
Sound level		dBA		< 50							
		W	440	440 665 905 440 665 905 1485							
Power dissipation in r conditions ⁽¹⁾	nominal	kcal/h	378	378 572 778 378 572 778 1277							
CONDITIONS		BTU/h	1501	1501 2269 3088 1501 2269 3088 5067							
		W	490	750	1050	490	750	1050	1550	2445	
Power dissipation (ma	,	kcal/h	421	645	903	421	645	903	1333	2102	
the worst conditions ⁽²⁾		BTU/h	1672	2559	3582	1672	2559	3582	5288	8342	
	Width	mm				444	/ 444	1	1		
Dimensions S4 / M4	Depth	mm				800	/ 800				
	Height	mm				800 /	1400				
Single unit	Operational	mm			-	Rear ≥ 200); Lateral ()			
Clearances	Maintenance	mm	Front ≥ 1500 Top ≥ 800								
Weight without batter	ies S4 / M4	kg	89 / 116 95 / 12								
Weight with batteries (depending on number		kg				191 / 288				197 / 294	
Weight with batteries (depending on number	M4	kg			43	0 / 527 / 6	624			436 / 533 / 630	

1) Considering nominal input current (400 V, battery charged) and rated output active power.

2) Considering maximum input current (low input voltage) and rated output active power.

4.2 ELECTRICAL CHARACTERISTICS

ELECTRICAL CHARACTERISTICS - R	ELECTRICAL CHARACTERISTICS - RECTIFIER INPUT												
Rated power (kVA)	10	10 15 20 10 15 20 30 40											
Phase in/out		3/1 3/3											
Rated mains supply voltage				400 V 3	3ph + N								
Voltage tolerance	(u	480 V to 340 V (up to 240 V with load linear decrease from 100% Pn to 70% Pn)											
Rated frequency				from 40 H	z to 70 Hz								
Power factor (input at full load and rated voltage)				≥C	.99								
Total harmonic distortion (THDi)	< 3%	< 2	.5%	< 3%	< 2	.5%	< 2	2%					
Max inrush current at start-up	< In (no overcurrent)												
Power walk-in(from battery to normal mode)			4 sec	onds (setta	able param	neters)							

ELECTRICAL CHARACTERISTICS - BYPASS											
Rated power (kVA)	10 15 20 10 15 20 30 40										
Phase in/out	3/1 3/3										
Bypass frequency variation speed	1 Hz/s (settable up to 3 Hz/s)										
Bypass rated voltage			Nomi	nal output	t voltage :	±15%					
Bypass rated frequency	50/60 Hz (selectable)										
Bypass frequency tolerance	±2% (configurable from 1% to 10%)										

ELECTRICAL CHARACTERI	STICS - IN	VERT	ER							
Rated power (kVA)			10	15	20	10	15	20	30	40
Phase in/out				3/1				3/3		
Rated output voltage phase neutral (selectable)			220/230/240 V 208 V (@ 95% Pn)							
Output voltage tolerance			Static: ±1% Dynamic: VFI-SS-111 (EN62040-3) compliant							
Rated output frequency					5	60/60 Hz	(selectable	e)		
Output frequency tolerance						±0.0	01%			
Load crest factor						≥	2.7			
Voltage harmonic distortion					E	⊧1% with	linear loa	d		
Quarland talarated by the investor	10 min	kW	12.5	18.75	25.0	12.5	18.75	25.0	37.5	50.0
Overload tolerated by the inverter	1 min	kW	15	22.5	30	15	22.5	30	45	60

ELECTRICAL CHARACTERISTICS - EFFICIENCY											
Rated power (kVA)	10	15	20	10	15	20	30	40			
Phase in/out	3/1 3/3										
Double conversion efficiency (normal mode - @ full load)	up to 96.2%										
Efficiency in EcoMode				up to s	99.3%						

ELECTRICAL CHARACTERISTICS - ENVIRO	NMENT								
Rated power (kVA)	10 15 20 10 15 20 30 40								
Phase in/out	3/1 3/3								
Storage temperatures	-5 to +50 °C (15 to 25 °C for better battery life)								
Working temperature	0 to +40 °C (15 to 25 °C for better battery life) Max +50°C @ 70% Sn for a limited time								
Maximum relative humidity (non-condensing)				95	5%				
Maximum altitude without derating				1000 m	(3300 ft)				
Degree of protection			IF	P20 (IP21	as option	า)			
Portability	ASTM D999-08, ASTM D-880, AFNOR NF H 00-042								
Colour	RAL 7016								

ELECTRICAL CHARACTERISTICS - BATTERY										
Rated power (kVA) 10 15 20 10 15 20 30							30	40		
Phase in/out 3/1						3/3				
Maximum recharge current	А	5								
Battery connection (UPS in parallel) Distributed or shared battery										

4.3 RECOMMENDED PROTECTION

RECOMMENDED PROTECTION DEVICES - RECTIFIER ⁽¹⁾											
Rated power (kVA)	10	15	20	10	15	20	30	40			
Phase in/out	3/1 3/3										
C curve circuit breaker (A)	25	32	40	25	32	40	63	80			
gG fuse (A)	25	32	40	25	32	40	63	80			

RECOMMENDED PROTECTION DEVICES - GENERAL BYPASS ⁽¹⁾											
Rated power (kVA)	10	15	20	10	15	20	30	40			
Phase in/out	3/1 3/3										
Maximum I^2t supported by the bypass (A ² s)		16000			8000	15000					
Max lpk supported by the Bypass	2400				1200	1700					
C curve circuit breaker (A)	63	100	125	25	32	40	63	80			
gG fuse (A)	63	100	125	25	32	40	63	80			

RECOMMENDED PROTECTION DEVICES - INPUT RESIDUAL CURRENT CIRCUIT BREAKER ⁽²⁾										
Rated power (kVA)	10	15	20	10	15	20	30	40		
Phase in/out		3/1			3/3					
Input residual current circuit breaker	0.5 A Selective									

RECOMMENDED PROTEC	TION DE	VICES -	OUTPUT	(3)					
Model	10	15	20	10 15 20 30				40	
Phase in/out	3/1			3/3					
Short-circuit inverter current (A) (when AUX MAINS is not present)	0 to 40 ms	120	177	237	40	59	79	117	156
	40 to 100 ms	99	147	198	33	49	66	98	130
C curve circuit breaker ⁽³⁾ (A)		≤ 10	≤ 16	≤ 20	≤ 4	≤ 4	≤ 6	≤ 10	≤ 13
B curve circuit breaker ⁽³⁾ (A)		≤ 20	≤ 32	≤ 40	≤ 6	≤ 10	≤ 16	≤ 20	≤ 25

CABLES - MAXIMUM CABLE SECTION										
Model	10	15	20	10	15	20	30	40		
Phase in/out	3/1 3/3									
Rectifier terminals (flexible cable)/(rigid cable) mm ²	25 50							0		
Bypass terminals (flexible cable)/(rigid cable) mm ²	50			25			50			
Battery terminals (flexible cable)/(rigid cable) mm ²		25						50		
Output terminals (flexible cable)/(rigid cable) mm ²		50			25	50				

(1) Rectifier protection should only be considered in the event of separate inputs. The bypass protection is given by recommendation. When the bypass and rectifier inputs are combined (common input), the general input protection rating must be whichever is the highest (bypass or rectifier).

(2) Must be selective with residual current circuit breakers downstream of the UPS connected to the UPS output. If the bypass network is separate from the rectifier circuit, or in the event of a parallel UPS configuration, use a single residual current circuit breaker upstream of the UPS.

(3) Selectivity of distribution after the UPS with inverter short-circuit current (short-circuit with AUX MAINS not present). The rating of the protection can be increased by "n" times downstream of a parallel UPS system, with "n" equal to the number of parallel modules.

MASTERYS GP4 10 to 40 kVA/kW

4.4 AVAILABILITY

The primary goal of every UPS system is to ensure power availability. Availability is defined for all repairable systems as

Availability = 1 - MTTR / MTBF

To achieve maximum system availability, it is necessary to deliver high reliability (high MTBF) and reduce repair times (short MTTR) as much as possible.

MTBF (Mean Time Between Failure) is a measure of UPS Reliability, being the reciprocal of Failure Rate:

Reliability is the most critical factor in the design and manufacture of any UPS.

The end result is a combination of know-how, quality material, and a design created with expertise throughout the production process.

The higher the MTBF, the lower the failure rate, making the UPS more reliable.

MEAN TIME BE	TWEEN FAILURE	
	> 350 000 h	Failure inside the UPS, but application still supplied in Bypass Mode
MTBF _{UPS}	> 10 000 000 h	Critical failure inside the UPS, causing a load cut

(1) VFI (Voltage and Frequency Independent) also called Normal Mode or Double Conversion Mode is the only UPS working-mode that ensures total load protection against all possible mains quality problems.

Even though high reliability limits the likelihood of failure, it is essential to respond quickly to unforeseen events in order to guarantee continuity and minimise the risk of downtime.

MTTR is the Mean Time To Restore the UPS after a failure i.e. the sum of Intervention Time and Repair Time:

MTTR = Intervention Time + Repair Time

The proximity of a service technician is vital to ensure rapid repair.

Furthermore, both UPS design and construction are critical success factors when it comes to serviceability and performance. MASTERYS GP4 has been specifically engineered for safe and fast maintenance by front access advanced brick replacement - with on-site repair time 5x faster than standard UPS systems and enhanced First Time Fix Rate.

5. REFERENCE STANDARDS AND DIRECTIVES

5.1 OVERVIEW

The equipment, installed, used and serviced in accordance with its intended use, its regulations and standards, its manufacturer instructions and rules, is in compliance with the relevant Union harmonisation legislation:

LVD 2014 / 35 / EU

DIRECTIVE 2014/35/EU OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of 26 February 2014, on the harmonisation of the laws of the Member States relating to the making available on the market of electrical equipment designed for use within certain voltage limits.

EMC 2014 / 30 / EU

DIRECTIVE 2014/30/EU OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of 26 February 2014, on the harmonisation of the laws of the Member States relating to electromagnetic compatibility.

RoHS 2011/65/EU

Directive 2011/65 of the European parliament and of the council of 8 June 2011 on the restriction of the use of certain hazardous substances in electrical and electronic equipment

5.2 STANDARDS

5.2.1 SAFETY

EN 62040-1 Uninterruptible Power System (UPS) - Part 1: General and safety requirements

IEC 62040-1 Uninterruptible Power System (UPS) - Part 1: Safety requirements (CB scheme by TÜV)

5.2.2 ELECTROMAGNETIC COMPATIBILITY

EN 62040-2 Uninterruptible Power System (UPS) - Part 2: Electromagnetic compatibility (EMC) requirements (tested and verified by third party)

IEC 62040-2 Uninterruptible Power System (UPS) - Part 2: Electromagnetic compatibility (EMC) requirements

5.2.3 TEST AND PERFORMANCE

EN 62040-3 Uninterruptible power systems (UPS). Methods of specifying the performance and test requirements

5.2.4 ENVIRONMENTAL

IEC 62040-4 Uninterruptible Power System (UPS) - Part 4: Environmental aspects - Requirements and reporting

5.3 SYSTEM AND INSTALLATION GUIDELINES

When carrying out electrical installation, all the above standards must be observed. All national and international standards (e.g. IEC60364) applicable to the specific electrical installation including batteries must be observed. For further information refer to 'Technical specifications' chapter in the user manual.

ELITE UPS: a mark of efficiency

Socomec, as CEMEP UPS manufacturer member, has signed a Code of Conduct put forward by the Joint Research Centre of the European Commission (JRC), to ensure the protection of critical applications and processes ensuring 24/7 continuous high quality supply. The JRC commits to mitigating energy losses and gas emissions caused by UPS equipment, therefore maximising UPS efficiency.

MASTERYS GP4 RK

10 to 40 kVA/kW

Socomec Resource Center To download, brochures, catalogues and technical manuals

OBJECTIVES

The aim of these specifications is to provide:

- the information required to choose the correct uninterruptible power supply for a specific application.
- the information required to prepare the system and installation site.

The specifications are intended for:

- installation engineers.
- design engineers.
- engineering consultants.

INSTALLATION REQUIREMENTS AND PROTECTION

Connection to the mains power supply and load(s) must be implemented using cables of suitable size, in accordance with current standards. If not already present, an electrical control station which can isolate the network upstream of the UPS must be installed. This electrical control station must be equipped with a circuit breaker (or two, if there is a separate bypass line) of an appropriate rating for the power drawn at full load.

If an external manual bypass is required, only the model supplied by the manufacturer must be installed.

For detailed information, see the installation and operating manual.

MASTERYS GP4 RK 10 to 40 kVA/kW

1. ARCHITECTURE

1.1 RANGE

MASTERYS GP4 is a full range of high performing UPS designed to:

- ensure 24/7/365 availability and business continuity for datacentre infrastructure,
- avoid data losses and downtime of company operations,
- reduce the electrical infrastructure's total cost of ownership,
- adopt a sustainable development approach.

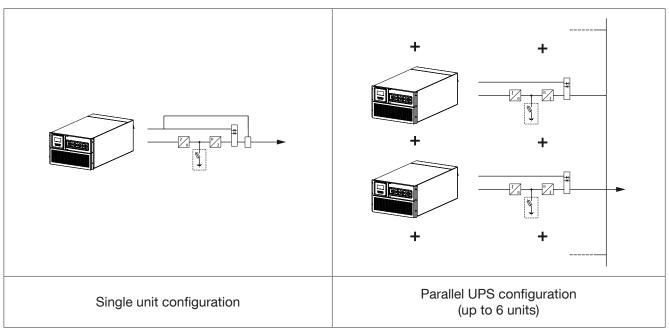
MODELS					
Rated power (kVA)	10	15	20	30	40
MASTERYS GP4 RK 3/1	•	•	٠		
MASTERYS GP4 RK 3/3	•	•	٠	•	٠

Matrix table for model and kVA power rating

Each family has been specifically designed to meet the demands of loads in specific application contexts, in order to optimise product features and facilitate its integration within the system.

2. FLEXIBILITY

2.1 POWER RATINGS FROM 10 TO 40 kVA/kW

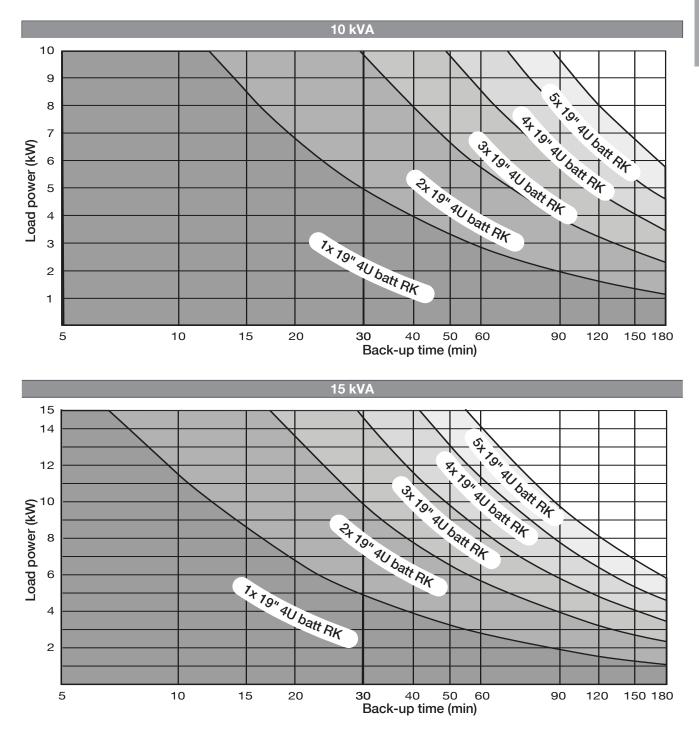

DIMENSIONS				
Cabinet type		Width (W) [mm]	Depth (D) [mm]	Height (H) [mm]
	RK	442 (Suitable for 19" rack cabinet)	820	305 (7U)

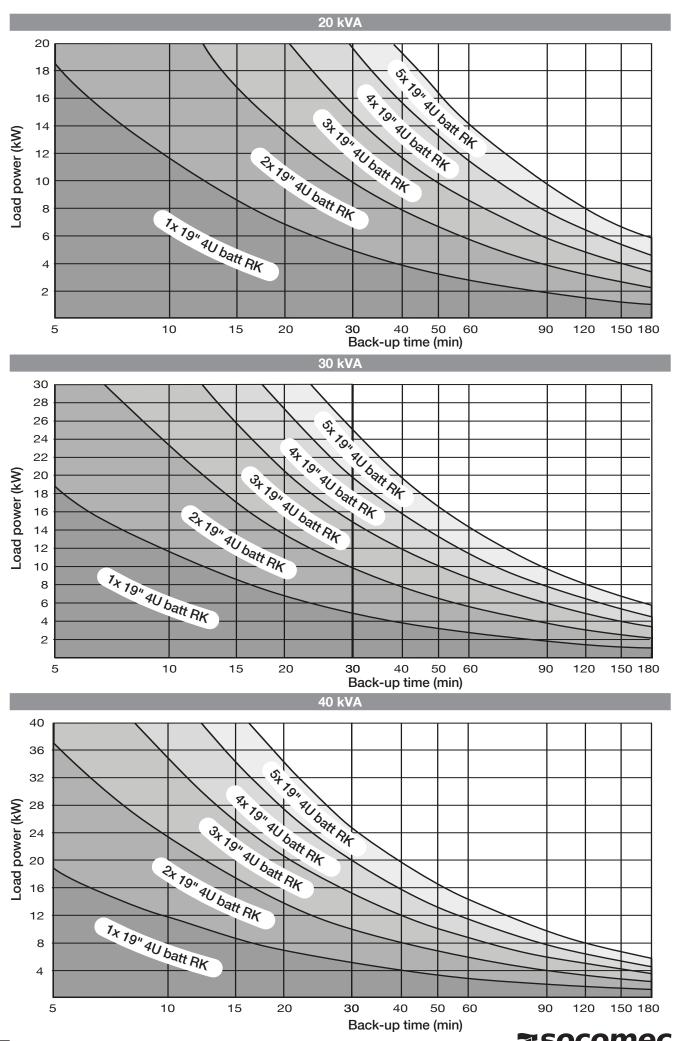
All of the control mechanisms and communication interfaces are located in the upper front section.

The intelligent design also provides easy access for maintenance and installation.

The air inlet is on the front, with outflow to the rear.

2.2 PARALLEL




MASTERYS GP4 RK 10 to 40 kVA/kW

2.3 FLEXIBLE BACK-UP TIME

Different extended back-up times are possible by using the standard 19" battery rack or an external battery cabinet. Batteries are installed on acid-proof trays and connected by means of polarised connectors to facilitate their maintenance. To guarantee maximum back-up time availability and battery life, the MASTERYS GP4 series is equipped with an EBS (Expert Battery System).

Socomec

3. STANDARD FEATURES AND OPTIONS

A	ilabilit	
Ava	паошт	v

Factory-installed option

O On site installed option

FEATURES	MASTERYS	GP4 RACK	
	10-15-20 kVA	30-40 kVA	NOTES
Battery Option			
Additional charger	•0	• 0	
19" 4U Battery Rack	0	0	
Communication Option			
ACS card	•0	•0	
(Automatic Cross Synchronisation)	•0	•••	
ADC+SL card	0	0	
(Advanced Dry Contact + Serial Link)	Ű	0	
External temperature sensor	0	0	▲ ● "ADC+SL card"
Remote touchscreen display	0	0	▲ ● "ADC+SL card"
BACnet/IP interface card	0	0	
Modbus TCP interface card	0	0	
Net Vision card			
(professional WEB/SNMP interface for UPS monitoring)	0	0	
EMD			
(Environmental Monitoring Device: temperature, humidity, 2 dry contacts)	0	0	Net Vision card"
Electrical Option			
19" 2U External Maintenance Bypass	0	0	
Parallel card	•0	•0	
Kit for TN-C / Neutral-Ground connection	0	0	
Internal Backfeed isolation device	•	•	
Kit For Common Mains	O (3/3)	0	
Redundant Bypass Ventilation	•	٠	
Cold Start	•	٠	

Required option

4. SPECIFICATIONS - MASTERYS GP4 RK

4.1 INSTALLATION PARAMETERS

INSTALLATION PARA	METERS									
Rated power (kVA)			10	15	20	10	15	20	30	40
Phase in/out				3/1				3/3		
Active power		kW	10	15	20	10	15	20	30	40
Rated/maximum rectifier input current (EN 62040-3)		A	15/22	23/30	31/39	15/22	23/30	31/39	46/55	62/73
Rated bypass input current		А	48 72 96 16 24 32 48		48	64				
Inverter output current @ 23	30 V	А	43	65	87	14	22	29	43	58
Maximum air flow		m3/h	240						360	
Sound level		dBA	< 50						< 58	
		W	440	665	905	440	665	905	1485	2090
Power dissipation in nominations ⁽¹⁾	al condi-	kcal/h	378	572	778	378	572	778	1277	1797
		BTU/h	1501	2269	3088	1501	2269	3088	5067	7131
		W	490	750	1050	490	750	1050	1550	2445
Power dissipation (max) in the worst conditions ⁽²⁾		kcal/h	421	645	903	421	645	903	1333	2102
		BTU/h	1672	2559	3582	1672	2559	3582	5288	8342
Dimensions	Width	mm				44	12			
(with standard back-up	Depth	mm				82	20			
time)	Height	mm				30)5			
Weight without batteries		kg	72							78

1) Considering nominal input current (400 V, battery charged) and rated output active power (PF1).

2) Considering maximum input current (low input voltage) and rated output active power (PF1).

4.2 ELECTRICAL CHARACTERISTICS

ELECTRICAL CHARACTERISTICS - REC	TIFIERI	NPUT						
Rated power (kVA)	10	15	20	10	15	20	30	40
Phase in/out		3/1 3/3						
Rated mains supply voltage	400 V 3ph + N							
Voltage tolerance	(up	480V to 340 V (up to 240 V with load linear decrease from 100% Pn to 70% Pn)						
Rated frequency	50/60 Hz (selectable)							
Frequency tolerance				±1(0%			
Power factor (input at full load and rated voltage)				≥0	.99			
Total harmonic distortion (THDi)	< 3%	< 2.	5%	< 3%	< 2	.5%	< 2	2%
Max inrush current at start-up				< In (no o\	vercurrent)		
Power walk-in(from battery to normal mode)			4 seco	onds (setta	able paran	neters)		

ELECTRICAL CHARACTERISTICS - BYPASS									
Rated power (kVA)	10	15	20	10	15	20	30	40	
Phase in/out		3/1		3/3					
Bypass frequency variation speed	1 Hz/s (settable up to 3 Hz/s)								
Bypass rated voltage	Nominal output voltage ±15%								
Bypass rated frequency	50/60 Hz (selectable)								
Bypass frequency tolerance			±2% (co	nfigurable	e from 1%	to 10%)			

ELECTRICAL CHARACTERI	STICS - IN	VERT	ER								
Rated power (kVA)			10	15	20	10	15	20	30	40	
Phase in/out				3/1				3/3			
Rated output voltage phase neutral (selectable)							0/240 V 95% Pn)				
Output voltage tolerance				Static: ±1% Dynamic: VFI-SS-111 (EN62040-3) compliant							
Rated output frequency			50/60 Hz (selectable)								
Output frequency tolerance			±0.01%								
Load crest factor			≥ 2.7								
Voltage harmonic distortion			±1% with linear load								
Querland talevated by the inverter	10 min	kW	12.5	18.75	25.0	12.5	18.75	25.0	37.5	50.0	
Overload tolerated by the inverter	1 min	kW	15	22.5	30	15	22.5	30	45	60	

ELECTRICAL CHARACTERISTICS - EFFICIENCY											
Rated power (kVA)	10	15	20	10	15	20	30	40			
Phase in/out	3/1			3/3							
Double conversion efficiency (normal mode - @ full load)	up to 96.2%										
Efficiency in EcoMode	up to 99.3%										

ELECTRICAL CHARACTERISTICS - ENVIRO	NMENT							
Rated power (kVA)	10	15	20	10	15	20	30	40
Phase in/out		3/1				3/3		
Storage temperatures	-5 to +50 °C (15 to 25 °C for better battery life)							
Working temperature	0 to +40 °C (15 to 25 °C for better battery life) Max +50°C @ 70% Sn for a limited time							
Maximum relative humidity (non-condensing)				95	%			
Maximum altitude without derating				1000 m	(3300 ft)			
Degree of protection			IF	P20 (IP21	as option	ר)		
Portability	ASTM D999-08, ASTM D-880, AFNOR NF H 00-042							
Colour	RAL 7016							

ELECTRICAL CHARACTERISTICS - BATTERY											
Rated power (kVA)		10	15	20	10	15	20	30	40		
Phase in/out			3/1		3/3						
Maximum recharge current	А	5									
Battery connection (UPS in parallel)		Distributed or shared battery									

MASTERYS GP4 RK 10 to 40 kVA/kW

4.3 RECOMMENDED PROTECTION

RECOMMENDED PROT	ECTION DE	VICES -	RECTIFI	E R ⁽¹⁾					
Rated power (kVA)		10	15	20	10	15	20	30	40
Phase in/out			3/1				3/3		
C curve circuit breaker (A)		25	32	40	25	32	40	63	80
gG fuse (A)		25	32	40	25	32	40	63	80
RECOMMENDED PROT	ECTION DE	VICES -	GENERA	L BYPAS	SS ⁽¹⁾				
Rated power (kVA)		10	15	20	10	15	20	30	40
Phase in/out			3/1				3/3		
Maximum I ² t supported by th (A ² s)	e bypass		16000			8000		150	000
Max lpk supported by the By	pass (A)		2400			1200		17	00
C curve circuit breaker (A)		63	100	125	25	32	40	63	80
gG fuse (A)		63	100	125	25	32	40	63	80
RECOMMENDED PROT	ECTION DE	VICES -	INPUT R	ESIDUAL	CURRE				
Rated power (kVA)		10	15	20	10	15	20	30	40
Phase in/out			3/1			1	3/3		
Input residual current circuit b	reaker				0.5 A S	Selective			
RECOMMENDED PROT	ECTION DE	VICES -	OUTPUT	(3)					
Model		10	15	20	10	15	20	30	40
Phase in/out			3/1				3/3	1	<u> </u>
Short-circuit inverter current (A)	0 to 40 ms	120	177	237	40	59	79	117	156
(when AUX MAINS is not present)	40 to 100 ms	99	147	198	33	49	66	98	130
C curve circuit breaker ⁽³⁾ (A)		≤ 10	≤ 16	≤ 20	≤ 4	≤ 4	≤ 6	≤ 10	≤ 13
B curve circuit breaker ⁽³⁾ (A)		≤ 20	≤ 32	≤ 40	≤ 6	≤ 10	≤ 16	≤ 20	≤ 25
CABLES - MAXIMUM C	ABLE SECTI	ION							
Model		10	15	20	10	15	20	30	40
Phase in/out			3/1	1		1	3/3		
Rectifier terminals (flexible cable)/(rigid cable) mr	m²			2	5			5	0
Bypass terminals (flexible cable)/(rigid cable) mr	m²		50			25	50		
Battery terminals (flexible cable)/(rigid cable) mr	m²	25					50		
Output terminals (flexible cable)/(rigid cable) mr	m²		50			25	50		

(1) Rectifier protection should only be considered in the event of separate inputs. The bypass protection is given by recommendation. When the bypass and rectifier inputs are combined (common input), the general input protection rating must be whichever is the highest (bypass or rectifier).

(2) Must be selective with residual current circuit breakers downstream of the UPS connected to the UPS output. If the bypass network is separate from the rectifier circuit, or in the event of parallel UPS configurations, use a single residual current circuit breaker upstream of the UPS.

(3) Selectivity of distribution after the UPS with inverter short-circuit current (short-circuit with AUX MAINS not present). The rating of the protection can be increased by "n" times downstream a parallel UPS system, with "n" equal to the number of parallel modules.

4.4 AVAILABILITY

The primary goal of every UPS system is to ensure power availability. Availability is defined for all repairable systems as

Availability = 1 - MTTR / MTBF

To achieve maximum system availability, it is necessary to deliver high reliability (high MTBF) and reduce repair times (short MTTR) as much as possible.

MTBF (Mean Time Between Failure) is a measure of UPS Reliability being the reciprocal of Failure Rate:

MTBF = 1 / Failure Rate

Reliability is the most critical factor in the design and manufacture of any UPS.

The end result is a combination of know-how, quality material, and a design created with expertise throughout the production process.

The higher the MTBF, the lower the failure rate, making the UPS more reliable.

MEAN TIME BETWEEN FAILURE										
MTBF _{VFI} ⁽¹⁾	> 500,000 h	Failure inside the UPS, but application still supplied in Bypass Mode								
	> 12,000,000 h	Critical failure inside the UPS, causing a load cut								

(1) VFI (Voltage and Frequency Independent) also called Normal Mode or Double Conversion Mode is the only UPS working-mode that ensures total load protection against all possible mains quality problems.

Even though high reliability limits the likelihood of failure, it is essential to respond quickly to unforeseen events in order to guarantee continuity and minimise the risk of downtime.

MTTR is the Mean Time To Restore the UPS after a failure i.e. the sum of Intervention Time and Repair Time:

MTTR = Intervention Time + Repair Time

The proximity of a service technician is vital to ensure rapid repair.

Furthermore, both UPS design and construction are critical success factors when it comes to serviceability and performance.

MASTERYS GP4 RK has been specifically engineered for safe and fast maintenance by front access advanced brick replacement – with on-site repair time 5x faster than standard UPS systems and an enhanced First Time Fix Rate.

5. REFERENCE STANDARDS AND DIRECTIVES

5.1 OVERVIEW

The construction of the equipment and choice of materials and components comply with all laws, decrees, directives and standards currently in force.

In particular, the equipment is fully compliant with all European Directives concerning CE marking.

LVD 2014/35/EU

Directive of the European Parliament and of the council of 26 February 2014 on the harmonisation of the laws of the Member States relating to the making available on the market of electrical equipment designed for use within certain voltage limits.

EMC 2014/30/EU

Directive of the European Parliament and of the council of 26 February 2014 on the harmonisation of the laws of the Member States relating to electromagnetic compatibility.

RoHS 2011/65/EU

Directive 2011/65 of the European parliament and of the council of 8 June 2011 on the restriction of the use of certain hazardous substances in electrical and electronic equipment

5.2 STANDARDS

5.2.1 SAFETY

EN 62040-1 Uninterruptible Power System (UPS) - Part 1: General and safety requirements

IEC 62040-1 Uninterruptible Power System (UPS) - Part 1: Safety requirements (CB scheme by TÜV)

5.2.2 ELECTROMAGNETIC COMPATIBILITY

EN 62040-2 Uninterruptible Power System (UPS) - Part 2: Electromagnetic compatibility (EMC) requirements (tested and verified by third party)

IEC 62040-2 Uninterruptible Power System (UPS) - Part 2: Electromagnetic compatibility (EMC) requirements

5.2.3 TEST AND PERFORMANCE

EN 62040-3 Uninterruptible Power System (UPS) - Part 3: Method of specifying the performance and test requirements

5.2.4 ENVIRONMENTAL

IEC 62040-4 Uninterruptible Power System (UPS) - Part 4: Environmental aspects - Requirements and reporting

5.3 SYSTEM AND INSTALLATION GUIDELINES

When carrying out electrical installation, all the above standards must be observed. All national and international standards (e.g IEC60364) applicable to the specific electrical installation including batteries must be observed. For further information refer to 'Technical specifications' chapter in the user manual.

ELITE UPS: a mark of efficiency

Socomec, as CEMEP UPS manufacturer member, has signed a Code of Conduct put forward by the Joint Research Centre of the European Commission (JRC), to ensure the protection of critical applications and processes ensuring 24/7 continuous high quality supply. The JRC commits to mitigating energy losses and gas emissions caused by UPS equipment, therefore maximising UPS efficiency.

MASTERYS GP4 60 to 160 kVA/kW

Socomec Resource Center To download, brochures, catalogues and technical manuals

OBJECTIVES

The aim of these specifications is to provide:

- the information required to choose the right uninterruptible power supply for a specific application.
- the information required to prepare the system and installation site.

The specifications are intended for:

- installation engineers.
- design engineers.
- engineering consultants.

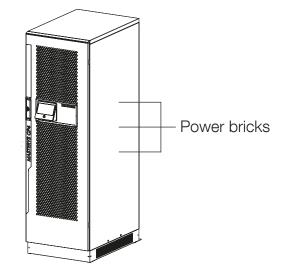
INSTALLATION REQUIREMENTS AND PROTECTION

Connection to the mains power supply and to the load(s) must be made using cables of suitable size, in accordance with current standards. If not already present, an electrical distribution panel which can isolate the network upstream of the UPS must be installed. This electrical distribution panel must be equipped with a protection device (or two, if there is a separate bypass line) of an appropriate rating for the power drawn at full load.

For detailed information, see the installation and operating manual.

1. ARCHITECTURE

1.1 RANGE


MASTERYS GP4 is a full range of high performing UPS systems designed to:

- ensure 24/7/365 availability and business continuity for mission critical applications,
- avoid data losses and downtime of company operations,
- reduce the electrical infrastructure's total cost of ownership,
- adopt a sustainable development approach.

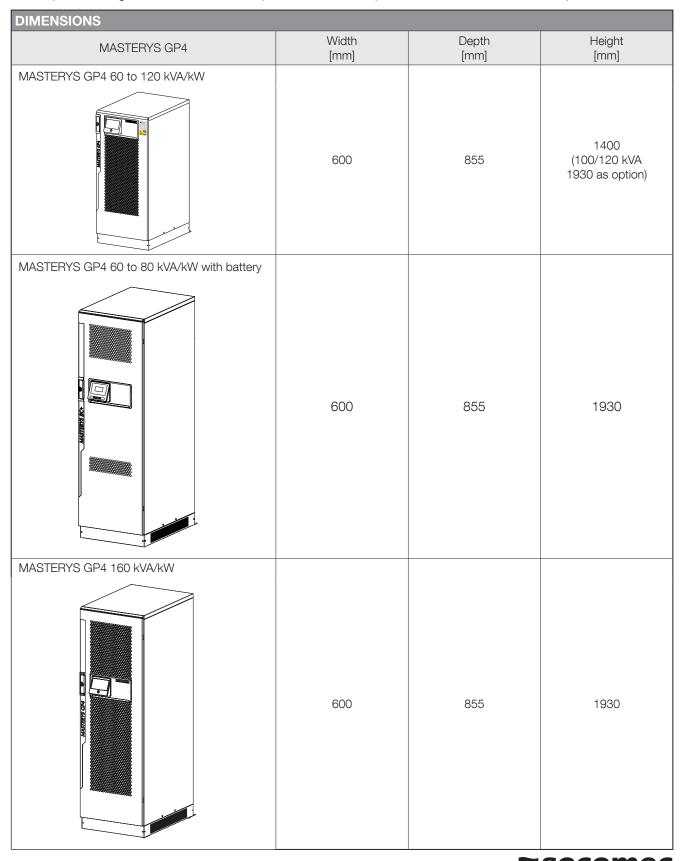
MASTERYS GP4										
Rated power (kVA)	60	80	100	120	160					
MASTERYS GP4 3/3 • • • • •										
Matrix table for model and kVA p	ower rating									

MASTERYS GP4 has been specifically designed to meet the demands of loads in specific application contexts, in order to optimise the features of the product and facilitate its integration within the system.

Masterys GP4 60-160 kVA feature in standard the intrinsic redundancy

Any potential fault should be isolated inside the affected sub-assemblies, keeping the critical load protected in double conversion mode thanks to the remaining power converters to maximize the Mean Time Between Critical Failure. The UPS will be designed to provide intrinsic double conversion mode redundancy in case of a single power brick is no longer available, to grant a minimum of:

- 50% load for 60 kVA/kW UPS in double conversion, even in case of a single brick failure;
- 50% load for 80 kVA/kW UPS in double conversion, even in case of a single brick failure;
- 60% load for 100 kVA/kW UPS in double conversion, even in case of a single brick failure;
- 66% load for 120 kVA/kW UPS in double conversion, even in case of a single brick failure;
- 75% load for 160 kVA/kW UPS in double conversion, even in case of a single brick failure.

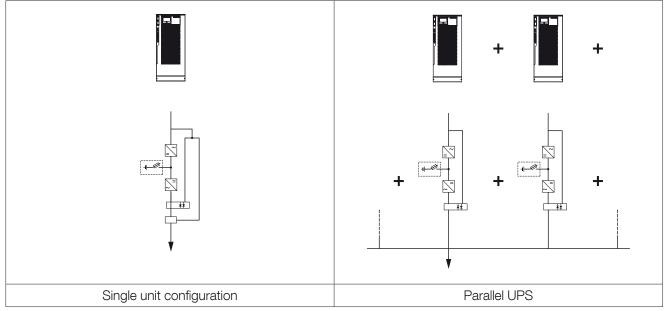


2. FLEXIBILITY

2.1 POWER RATINGS FROM 60 TO 160 kVA/kW

The equipment has been designed with a minimum direct and indirect footprint (the actual space occupied by the unit and the space required around it for maintenance, ventilation and access to the operating mechanisms and communication devices). The detailed design also provides easy access for maintenance and installation.

All of the control mechanisms are located on the front at the bottom and communication interfaces are on the inside of the door. The air inlet is on the front, with outflow from the rear side; this means other equipment or external battery enclosures can be placed alongside the UPS unit. With specific cabinets it is possible to have solution with a top air outlet



2.2 FLEXIBLE BACK-UP TIME

Different extended back-up times are possible by using external battery cabinets, optionally with a enhanced battery charger. Selection of the back-up time is flexible thanks to the wide range of battery string voltages. MASTERYS GP4 is setup for Lithium Battery

2.3 HORIZONTAL PARALLEL

MASTERYS GP4 offers 2 UPS configurations in the same range.

2.4 RELIABILITY

Reliability is the most critical factor for any UPS solution designed to protect and manage the continuity of activities and services. MASTERYS GP4 MTBF exceeds the market standard, and Socomec officially declares its MTBF data.

2.5 SEISMIC RESISTANT

The 4th generation MASTERYS units (with SEISMIC option installed) have successfully passed extensive tests to verify resistance to withstand seismic events.

Tests have been performed by accredited laboratories according to the standards covering zones with the highest level of seismic activity: Zone 4.

The test requires that the UPS system, working at full load and provided with floor fixing devices, must resist the stresses and accelerations defined by the test protocol. When the test has been completed, the UPS must be intact and working perfectly.

3. STANDARD AND OPTIONS

Availability						
	Factory-installed option					
0	Available as option					
_	Not available					
STD	Standard feature					

		MASTE	RYS GP4				
FEATURES	60-80) kVA	100-120 kVA	160 kVA	NOTE		
	External batteries	Internal batteries	External batteries	External batteries		-	
Battery Option							
Additional charger	•0	_	•0	•0		S "Kit for Rectifier Neutral creation"	
Communication Option							
ACS card (Automatic Cross Synchronisation)	•0	•0	•0	•0			
ADC+SL card (Advanced Dry Contact + Serial Link)	0	0	0	0			
Temperature sensor	0	0	0	0		#ADC+SL card	
Remote touchscreen display	0	0	0	0		#ADC+SL card	
BACnet card	0	0	0	0			
Modbus TCP card	0	0	0	0			
Net Vision card	0	0	0	0			
EMD (Environmental Monitoring Device)	0	0	0	0		INet Vision card	
PROFIBUS protocol interface	0	0	0	0		IADC+SL card	

		MASTE				
FEATURES	60-80) kVA	100-120 kVA	160 kVA		F
	External batteries	Internal batteries	External batteries	External batteries		-
Electrical Option	Datteries	Datteries	Datteries	Datteries		
Parallel card	•0	•0	•0	•0		S "Cold start"
Kit for Parallel Configuration (C7)	-	_	•0	•0		Parallel card
External Isolation Transformer	_	_	0	_		
IMD (Insulation Monitoring Device)	_	_	0	_		External Isolation Transformer
External Maintenance Bypass	0	0	0	_		
Kit for TN-C / Neutral-Ground connection	•0	•0	•0	•0		S "Kit for Rectifier Neutral creation"
Internal Backfeed Protection	•	•	•	•		
Kit For Common Mains	0	0	0	0		S "Kit for Rectifier Neutral creation"
Kit for Rectifier Neutral creation	•	_	•	•		 "Kit for TN-C / Neutral-Ground connection" "Kit For Common Mains" "Additional charger"
Redundant Bypass Ventilation	•	•	•	•		
Mechanical Option				<u> </u>		
Option slots 3	•	_	•	"STD"		
Anti-vermin protection	•	•	•	•		
Kit for IP21	0	0	0	0		 Top air exhausted" "Top entry cables"
Seismic adaptation	•	_	•	•		S "Top entry cables"
"T" cabinet	_	"STD"	•	"STD"		
Top air exhausted	_	-	•	•		 ""T" cabinet" "Kit for IP21" "Top entry cables"
Top entry cables	_	_	0	0		 ""T" cabinet" "Seismic adaptation" "Kit for IP21" "Top air exhausted"
Other						
Cold start	•0	•0	•0	•0		S "Parallel card"

Required option

S Incompatible option

4. SPECIFICATIONS

4.1 INSTALLATION PARAMETERS

INSTALLATION PARA	METERS							
Rated power (kVA)			60	80	100	120	160	
Phase in/out				1	3/3	L		
Active power		kW	60	80	100	120	160	
Rated/maximum rectifier input current (EN 62040-3)		А	93/110	123/146	154/183	185/219	247/292	
Rated bypass input currer	t ⁽¹⁾	А	96	128	160	191	255	
Inverter output current @ 400 V Pn		А	87	116	145	174	232	
Recommended air flow capacity		m³/h	480	720	840	1080	1440	
Acoustic Noise @ 70% Pn dB			53 ext. batt.	/ 55 int. batt.	5	5	57	
		W	2880	3950	4800	5940	8000	
Power dissipation in nomir conditions ⁽²⁾	al	kcal/h	2476	3396	4127	5107	6879	
Conditions		BTU/h	9833	13486	16388	20280	27297	
		W	3360	4630	5500	6560	9350	
Power dissipation (max) ir conditions ⁽³⁾	the worst	kcal/h	2889	3981	4729	5641	8040	
		BTU/h	11471	15807	18778	22397	31904	
Dimensions	Width	mm			600			
for 60-80 Models	Depth	mm			855			
(external/internal batteries)	Height	mm	1400 /	/ 1930	1400 (193	1400 (1930 optional)		
Weight	1	kg	174	186	228	240	338	
Weight with internal batter	y	kg	680	-820		-		

1. Considering nominal bypass current calculated @ 400 V, considering a continuos overload of 110%.

2. Considering nominal input current (400 V, battery charged) and rated output active power (PF1).

3. Considering maximum input current (low input voltage, battery charged) and rated output active power (PF1).

4.2 ELECTRICAL CHARACTERISTICS

ELECTRICAL CHARACTERISTICS - REC	TIFIER INPU	т						
Rated power (kVA)	60	80	100	120	160			
Rated mains supply voltage	400 V 3ph + N							
Voltage tolerance	340 to 480 V (-15 +20%)							
Voltage tolerance at derated load	up to 240 V @ 70% of nominal active load							
Rated frequency		fro	om 40 Hz to 70 I	Hz				
Power factor (at full load and rated voltage)			≥ 0.99					
Current Total harmonic distortion (THDi)			≤2%					
Max inrush current at start-up	<in< td=""></in<>							
Power walk-in (from battery to normal mode)		4 secor	nd (settable para	imeters)				

ELECTRICAL CHARACTERISTICS - BYPASS							
Rated power (kVA)		60	80	100	120	160	
Bypass frequency variation speed	ass frequency variation speed 1 Hz/s (settable up to 3 Hz/s)						
Bypass rated voltage	Nominal output voltage $\pm 15\%$ (selectable $\pm 5 \pm 20\%$)						
Bypass rated frequency	50/60 Hz (selectable)						
Bypass frequency tolerance	equency tolerance $\pm 2\%$ (configurable from $\pm 1\%$ to $\pm 10\%$				% to ±10%)		
	10 min	109	145	181	218	290	
Bypass current overload (A)	1 min	130	174	217	261	348	

ELECTRICAL CHARACTERIST	ICS - INVERTI	ER						
Rated power (kVA)	60	80	100	120	160			
Rated output voltage (selectable)			380/4	00/415 V (sele	ctable)			
Output voltage tolerance		Static: ±1% Dynamic: VFI-SS-111 (EN 62040-3 compliant)						
Rated output frequency (selectable)		50/60 Hz (selectable)						
Output frequency tolerance		±0.01% on mains power failure						
Load crest factor	≥ 2.7							
Voltage total harmonic distortion THD	V	< 1% with linear load						
	10 min	75	100	125	150	200		
Inverter overload (kW) (1)	5 min	79	106	132	158	211		
	1 min	90	120	150	180	240		
Short-circuit inverter current (A) (when AUX MAINS is not present)	0 to 40 ms	234	312	390	468	624		
	40 to 100 ms	196	260	326	390	520		

ELECTRICAL CHARACTERISTICS - EFFICIENCY							
Rated power (kVA)	60 80 100 120 160						
Double conversion efficiency	up to 96.5%						
EcoMode efficiency	99.4%						

ELECTRICAL CHARACTERISTICS - ENVIRONMENT									
Rated power (kVA)	60 80 100 120 160								
Storage temperatures	-5 to +50 °C (23 to 122 °F) (15 to 25 °C for better battery life)								
Working temperature	0 to +40 °C (32 to 104 °F) (15 to 25 °C for better battery life) Up to 50 °C @70% Pn for a limited time								
Maximum relative humidity (non-condensing)	95%								
Maximum altitude without derating	1000 m (3300 ft)								
Degree of protection	IP20 (IP21 as option)								
Colour	RAL 7016								

4.3 RECOMMENDED PROTECTIONS

RECOMMENDED PROTECTION DEVICES - RECTIFIER (1)							
Rated power (kVA)	60 80 100 120 16						
C curve circuit breaker (A)	125	160	25	315			
gG fuse (A)	125	160	250		315		

RECOMMENDED PROTECTION DEVICES - GENERAL BYPASS ⁽²⁾								
Rated power (kVA)	60	80	100	120	160			
Max I ² t supported by the bypass (A ² s)	120	000	400000					
Max lpk supported by the Bypass(A)	50	9000 9000						
Conditional short circuit current rating (Icc)	10 kA							
C curve circuit breaker (A)	160	200	250		400			
gG fuse (A)	160	200	250 400					

RECOMMENDED PROTECTION DEVICES - INPUT RESIDUAL CURRENT CIRCUIT BREAKER ⁽³⁾						
Rated power (kVA) 60 80 100 120 160						
Input residual current circuit breaker	0.5 A Selective type B					

RECOMMENDED PROTECTION DEVICES - OUTPUT ⁽⁴⁾							
Rated power (kVA)	60	80	100	120	160		
C curve circuit breaker (3) (A)	≤ 16	≤ 20	≤ 25	≤ 32	≤ 40		
B curve circuit breaker (3) (A)	≤ 32	≤ 40	≤ 50	≤ 63	≤ 80		

CABLES - MAXIMUM CABLE SECTION ⁽⁵⁾								
Rated power (kVA)	60	80	100	120	160			
Rectifier terminals (4x)					la ca la autorita			
Bypass terminals (4x)		holes ø 8 mm mm²	bus bar with h 2x120	bus bar with holes ø 10 mm 2x150 mm ²				
Battery terminals (3x)		and rigid cable)		and rigid cable)	(flexible cable and rigid cable)			
Output terminals (4x)					and figid cable)			

1. Rectifier protection should only be considered in the event of separate inputs. Recommended values to avoid unwanted tripping with UPS at full power. When the bypass and rectifier inputs are combined (common input), the general input protection rating must be the highest of the two (bypass or rectifier).

2. Recommended values to avoid unwanted tripping with UPS at full power. A current limiting device has to be used in case of maximum i²t and lpk of the SCR by-pass is exceeded. When the bypass and rectifier inputs are combined (common input), the general input protection rating must be the highest of the two (bypass or rectifier).

- 3. RCD is not necessary when the UPS is installed in a TN-S system. RCD is not permitted on TN-C systems. If a RCD is required a B-type should be used. RCD must be coordinate with residual current circuit breakers downstream of the UPS connected to the UPS output. If the bypass network is separate from the rectifier circuit, or in the event of parallel UPS, use a single residual current circuit breaker upstream of the UPS.
- 4. Protection tripping downstream of the UPS with inverter short circuit current (Worst case = AUX MAINS not present). In the Normal case, with AUX MAINS present, fault clearing is determined by the Mains short-circuit capability. The rating of the protection can be increased "n" times downstream of a parallel UPS system, with "n" equal to the number of parallel UPS units.

5. Use cable with tin-plated eyelets for the connection

5. REFERENCE STANDARDS AND DIRECTIVES

5.1 OVERVIEW

The construction of the equipment and choice of materials and components comply with all laws, decrees, directives and standards currently in force.

In particular, the equipment is fully compliant with all European Directives concerning CE marking.

LVD 2014/35/EU

Directive of the European Parliament and of the council of 26 February 2014 on the harmonisation of the laws of the Member States relating to the making available on the market of electrical equipment designed for use within certain voltage limits.

EMC 2014/30/EU

Directive of the European Parliament and of the council of 26 February 2014 on the harmonisation of the laws of the Member States relating to electromagnetic compatibility.

RoHS 2011/65/EU

Directive 2011/65 of the European parliament and of the council of 8 June 2011 on the restriction of the use of certain hazardous substances in electrical and electronic equipment

5.2 STANDARDS

5.2.1 SAFETY

EN 62040-1 Uninterruptible Power System (UPS) - Part 1: General and safety requirements IEC 62040-1 Uninterruptible Power System (UPS) - Part 1: Safety requirements (CB scheme by TÜV)

5.2.2 ELECTROMAGNETIC COMPATIBILITY

EN 62040-2 Uninterruptible Power System (UPS) - Part 2: Electromagnetic compatibility (EMC) requirements (tested and verified by third party)

IEC 62040-2 Uninterruptible Power System (UPS) - Part 2: Electromagnetic compatibility (EMC) requirements

5.2.3 TEST AND PERFORMANCE

EN 62040-3 Uninterruptible Power System (UPS) - Part 3: Method of specifying the performance and test requirements

5.2.4 ENVIRONMENTAL

IEC 62040-4 Uninterruptible Power System (UPS) - Part 4: Environmental aspects - Requirements and reporting

5.3 SYSTEM AND INSTALLATION GUIDELINES

When carrying out electrical installation, all the above standards must be observed. All national and international standards (e.g IEC60364) applicable to the specific electrical installation including batteries must be observed. For further information refer to 'Technical specifications' chapter in the user manual.

ELITE UPS: a mark of efficiency

Socomec, as CEMEP UPS manufacturer member, has signed a Code of Conduct put forward by the Joint Research Centre of the European Commission (JRC), to ensure the protection of critical applications and processes ensuring 24/7 continuous high quality supply. The JRC commits to mitigating energy losses and gas emissions caused by UPS equipment, therefore maximising UPS efficiency.

DELPHYS GP

Green Power 2.0 range 160 to 1000 kVA/kW

Socomec Resource Center To download, brochures, catalogues and technical manuals

OBJECTIVES

The aim of these specifications is to provide:

- the information required to choose the right uninterruptible power supply for a specific application.
- the information required to prepare the system and installation site.

The specifications are intended for:

- installation engineers.
- design engineers.
- engineering consultants.

INSTALLATION REQUIREMENTS AND PROTECTION

Connection to the mains power supply and to the load(s) must be made using cables of suitable size, in accordance with current standards. If not already present, an electrical control station which can isolate the network upstream of the UPS must be installed. This electrical control station must be equipped with a circuit breaker (or two, if there is a separate bypass line) of an appropriate rating for the power draw at full load.

If an external manual bypass is required, only the model supplied by the manufacturer must be installed.

We recommend fitting two metres of unanchored flexible cable between the UPS output terminals and the cable anchor (wall or cabinet). This makes it possible to move and service the UPS.

For detailed information, see the installation and operating manual.

DELPHYS GP 160 to 1000 kVA/kW

1. ARCHITECTURE

1.1 RANGE

DELPHYS GP is a full range of high performing Green Power 2.0 UPS designed to:

- ensure 24/7/365 availability and business continuity to datacentre infrastructures,
- to avoid data losses and downtime of company operations,
- to reduce the electrical infrastructure's total cost of ownership,
- to adopt a sustainable development approach.

GREEN POWER 2.0									
Rated power (kVA)	160	200	250	300	400	500	600	800	1000
DELPHYS GP 3/3	•	•	•	•	•	•	•	•	•

Matrix table for model and kVA power rating

DELPHYS GP has been specifically designed to meet the demands of loads in specific application contexts, in order to optimise the features of the product and to facilitate its integration within the system.

2. FLEXIBILITY

2.1 POWER RATINGS FROM 160 TO 1000 kVA/kW

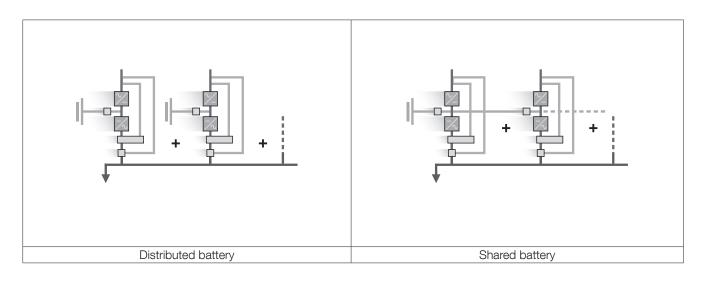
The equipment has been designed with a minimum direct and indirect footprint (the actual space occupied by the unit and the space required around it for maintenance, ventilation and access to the operating mechanisms and communication devices).

The careful design also provides easy access for maintenance and installation.

All of the control mechanisms and communication interfaces are located in the front side and can be accessed from a door provided with handle and lock.

The air inlet is on the front, with outflow from the upper side; this means other equipment or external battery enclosures can be placed alongside the UPS unit.

DELPHYS GP - DIMENSIONS											
		Width (W) [mm]	Depth (D) [mm]	Height (H) [mm]							
	160 kVA/kW	700	800	1930							
	200 kVA/kW	100									
	250 kVA/kW	1000	950								
	300 kVA/kW	1000	950	1930							
	400 kVA/kW	1400	800	1930							
	500 kVA/kW	1600	950								
	600 kVA/kW	2810	950	2060							


DELPHYS GP - DIMENSIONS		Width (W) [mm]	Depth (D) [mm]	Height (H) [mm]
	800 kVA/kW	3510	950	2060
	1000 kVA/kW	3910	900	2000

2.2 BATTERY MANAGEMENT

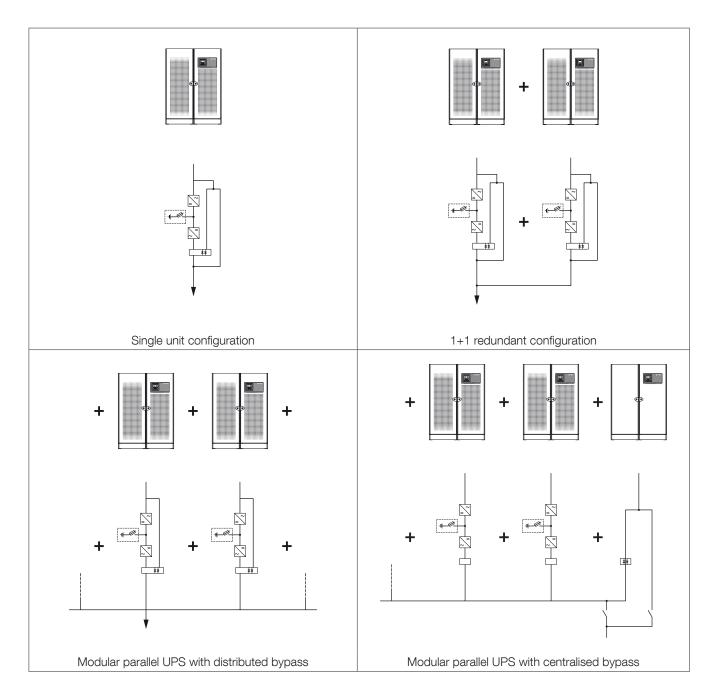
Available with distributed batteries, DELPHYS GP allows to optimise the batteries size thanks to a shared battery operation. This reduces the overall system footprint, the weight of the required batteries, the battery monitoring system, the amount of wiring needed and the amount of lead.

To guarantee maximum back-up time availability and battery life, DELPHYS GP includes:

- EBS (Expert Battery System), smart battery charging management.
- Distributed or shared battery for energy storage optimization on parallel systems.
- Capability to discharge the battery at a programmable power ("BCR" option), without any load bank and keeping the load protected by online double conversion.

DELPHYS GP 160 to 1000 KVA/K

2.3 UPS AND SYSTEM ARCHITECTURES


DELPHYS GP units (rectifier, battery, inverter and bypass) can be connected in parallel with distributed or central bypass:

- up to 8 units (160, 200, 250, 300 and 500 kVA/kW)
- up to 6 units (400 kVA/kW)
- up to 4 units (600 and 1000 kVA/kW)
- up to 3 units (800 kVA/kW)

This solution, which is ideally suited for N+1 redundancy, offers flexible power upgrading and enables stand-alone UPS units to be expanded.

Each single UPS unit has a built-in maintenance bypass (single unit or 1+1 distributed bypass).

It is possible to add an external maintenance bypass, common to all of the UPS units, for maintenance access. A central bypass configuration has a common maintenance bypass for the complete system.

DELPHYS GP 160 to 1000 kVA/kW

3. STANDARD AND OPTIONS

3.1 STANDARD ELECTRICAL FEATURES.

- Integrated maintenance bypass (single and 1+1 redundant units).
- Backfeed protection: detection circuit.
- EBS (Expert Battery System) for battery management.
- Redundant cooling.
- Battery temperature sensor.

3.2 ELECTRICAL OPTIONS.

- Separated or common input mains.
- External maintenance bypass.
- Extended battery charger capability.
- Shared battery.
- Lithium batteries.
- Galvanic isolation transformer.
- Backfeed isolation device.
- ACS synchronisation system.
- BCR (Battery Capacity Re-injection).
- FAST ECOMODE.

3.3 STANDARD COMMUNICATION FEATURES.

- User-friendly 7' touch-screen multilingual color graphic display.
- 2 Com-Slots for communication options.
- USB port to download UPS report and log file.
- Ethernet port for service purpose.

3.4 COMMUNICATION OPTIONS.

- Dry-contact interface (configurable volatge-free contacts).
- MODBUS RTU RS485 or TCP.
- PROFIBUS / PROFINET gateway.
- BACnet/IP interface.
- NET VISION: professional WEB/SNMP Ethernet interface for secure UPS monitoring and remote automatic shutdown.
- NET VISION EMD: Environment Temperature and Humidity sensor with 2 inputs.
- Remote View Pro supervision software.
- IoT Gateway for Socomec cloud services and SoLive mobile app.
- Remote touch-screen panel.
- Addional Com-Slot extension.

3.5 REMOTE MONITORING AND CLOUD SERVICES.

- SoLink: Socomec 24/7 Remote Monitoring Service connecting your installation to the nearest Socomec Service Centre.
- SoLive: Mobile app taking the surveillance of all your UPS systems into your smartphone.

4. INSTALLATION PARAMETERS

INSTALLATION PARAMENTERS												
Rated power (kVA)		160	200	250	300	400	500	600	800	1000		
Phase in/out					Э	3/3						
Active power (kW)		160	160 200 250 300 400 500 600 800				800	1000				
Rated/maximum rectif input current (A)	Rated/maximum rectifier input current (A)			380/425	455/520	610/680	760/850	916/1020	1220/1360	1520/1700		
Rated bypass input cu	urrent (A)	231	289	361	433	578	722	866	866 1155			
Inverter output current @ 230 V (A) P/	Ń	231	289	361	433	578	722	866	866 1155			
Maximum air flow (m ³ /	′h)	22	50	27	00	4500	5400	6750	10800			
Sound level (dBA)		≤ 65	≤ 67	≤ 70			≤	72	≤ 73	≤74		
	W	7900	10400	12800	15200	22000	24300	33600	43000	54675		
Power dissipation in nominal conditions ⁽¹⁾	kcal/h	6797	8948	11013	13078	18929	20908	28890	36970	47020		
	BTU/h	26956	35486	43675	51864	75066	82914	114650	146720	217060		
Power dissipation	W	10000	13000	15000	18000	26000	30000	42000	53800	66000		
(max) in the worst	kcal/h	8604	11185	12906	15490	22370	25812	36100	46260	56760		
conditions ⁽²⁾	BTU/h	34121	44358	51182	61420	88716	102364	143310	183570	262020		
	W mm	70	00	10	00	1400	1600	2810	3510	3910		
Dimensions	D mm	80	00	95	50	800	950		950			
	H mm			19	30				2060			
Weight (kg) 4		470	490	850	900	1000	1500	2300	2800	3800		

1) Considering nominal input current (400 V, battery charged) and rated output active power (PF1).

2) Considering maximum input current (low input voltage, battery recharge) and rated output active power (PF1).

4.1 ELECTRICAL CHARACTERISTICS

ELECTRICAL CHARACTERISTICS - RECTIFIER ⁽¹⁾ INPUT											
Rated power (kVA)	160	160 200 250 300 400 500 600 800 1000									
Rated mains supply voltage (V)		400 3ph									
Voltage tolerance		200 V to 480 V ⁽²⁾									
Rated frequency	50/60 Hz										
Frequency tolerance	42 to 65 Hz										
Power factor					> 0.99						
Total harmonic distortion (THDi) (at full load and rated voltage)					< 2.5%(3)						
Max inrush current at start-up	< In (no overcurrent)										
Soft start A/sec (settable)	50 100 150 200										

1) IGBT rectifier.

2) Conditions apply.

3) With input THDV < 1%.

ELECTRICAL CHARACTERISTICS - BATTERY											
Rated power (kVA)	160	200	250	300	400	500	600	800	1000		
Min/Max number of battery cells with load PF=1 ⁽¹⁾	216/258	258/258	252/258	258/258	258/258	252/258	258/258	258/258	252/258		
Min/Max number of battery cells with load PF \leq 0,9 ⁽¹⁾	216/258	234/258	234/258	252/258	234/258	234/258	252/258	234/258	234/258		
Min/Max number of battery cells with load PF \leq 0,8 ⁽¹⁾	216/258	216/258	216/258	234/258	216/258	216/258	234/258	216/258	216/258		
Battery AC ripple current	< 3% C10										
Battery AC ripple voltage	< 1% on the battery bloc										

ELECTRICAL CHARACTERISTICS - BYPASS											
Rated power (kVA)	160	200	250	300	400	500	600	800	1000		
Bypass frequency variation speed	1.5 Hz/s settable from 1 to 3 Hz/s										
Bypass rated voltage	Nominal output voltage ±15% (settable)										
Bypass rated frequency	50/60 Hz (selectable)										
Bypass frequency tolerance	$\pm 2\%$ (from $\pm 1\%$ to $\pm 8\%$ (operation with generator unit))										

ELECTRICAL CHARACTERISTICS - INVERTER											
Rated power (kVA)		160	200	00 250 300 400 500 600 800						1000	
Rated output voltage (selectable	e) (V)	400 3ph + N (380/415 configurable)									
Output voltage tolerance		static load $\pm 1\%$, dynamic load VFI-SS-111 compliant									
Rated output frequency (Hz)	50/60 Hz (selectable)										
Autonomous frequency tolerand	ce	$\pm 0.02\%$ on mains power failure									
Load crest factor		3:1									
Harmonic voltage distortion		ThdU \leq 1,5 % with rated linear load									
Overload tolerated	10 min	200 kW	225 kW	280 kW	337 kW	450 kW	560 kW	675 kW	900 kW	1120 kW	
by the inverter - 25 °C	1 min	240 kW	270 kW	312 kW	405 kW	540 kW	625 kW	810 kW	1080 kW	1250 kW	

ELECTRICAL CHARACTERISTICS - EFFICIENCY											
Rated power (kVA)	160	160 200 250 300 400 500 600 800 1000									
Double conversion efficiency (normal mode - VFI)	up to 96%										
Fast EcoMode	up to 99%										

ELECTRICAL CHARACTERISTICS - ENVIRONMENT												
Rated power (kVA)	160 200 250 300 400 500 600 800 1000											
UPS storage conditions	-20 to +70 °C under \leq 70% condensation free RH $^{\scriptscriptstyle(2)}$											
UPS working conditions	0 to +40 °C under \leq 95% condensation free RH $^{(1)(2)}$											
Maximum altitude without derating	1000 m (3,300 ft)											
Degree of protection				IP 20 (c	other IP as	option)						
Portability	EN 60068-2											
Colour	cabinet: RAL 7012, door: silver grey											

1) Conditions apply.

2) 10°C minimum to start the UPS. 15 to 25 °C suggested for the associated battery.

DELPHYS GP 160 to 1000 kVA/kW

4.2 RECOMMENDED PROTECTIONS

RECOMMENDED PROTECTION DEVICES - RECTIFIER ⁽¹⁾													
Rated power (kVA)		160	200	250	3	300	400	500	60	00	800)	1000
Circuit breaker (A)		315	400	630			800	1000	12	50	160	С	2000
gG fuse (A)		315	400		630		800	1000	12	50	160	C	2000
RECOMMENDE	D PROTECTION D	EVICES	- GEN	ERAL B	YPA	SS ⁽¹⁾							
Rated power (kVA)		160	200	250	300	400	500	6	00	8	00		1000
Semiconductors	l²t (A²s)		3200	00		78000	0 10500	00 175	0000	310	0000	27	00000
characteristics	ls/c (A peak)		800	0		12500	1450	0 18	700	25	000	2	3000
Circuit breaker (A)		400	C	630			800	10	000	12	250		1600
RECOMMENDE	D PROTECTION D	EVICES	- INPL	JT RESI	DUA	L CUF	RENT	CIRCU	IT BF	REA	KER ^{(;}	2)	
Rated power (kVA)		160	200	250	3	300	400	500 6		008 00)	1000
Phase in/out							3/3						
Input residual curren	t circuit breaker						3 A						
RECOMMENDE	O PROTECTION D	EVICES	- OUT	PUT ⁽³⁾									
Rated power (kVA)		160	200	250	3	300	400	500	60	00	800)	1000
Short-circuit inverter Ik1=Ik2=Ik3 ⁽⁴⁾ (A) - (0 (when AUX MAINS is	to 100 ms)	7(60	900	1	100	1500	1800	22	00	300	С	3600
C curve circuit break	ker (A)	≤	63	≤ 80	≤	100	≤ 1	60	≤2	200	≤ 25	0	≤ 300
B curve circuit break	er (A)	≤ 1	125					-					
CABLES CONNE	CTION - MAXIMU		ABILIT	Y PER F	POLE								
Rated power (kVA)		160	200	250	3	300	400	500	60	00	800)	1000
Rectifier terminals (m	ctifier terminals (mm²) 2 x 150		150	2	x 240		3 x 300		4 x 300		00		
Bypass terminals (m	ass terminals (mm ²) 2 x 150		2	2 x 240		3 x 300		4 x 300					
Battery terminals (m	2 x 240		2	2 x 240		2 x 300 3 x 300		4 x 300					

1) Rectifier protection should only be considered in the event of separate inputs. The bypass protection is given by recommendation. When the bypass and rectifier inputs are combined (common input), the general input protection rating must be the highest of both (bypass or rectifier).

2 x 240

3 x 300

2 x 150

2) Must be selective with residual current circuit breakers connected downstream of the UPS. If the bypass network is separate from the rectifier circuit, or in the event of parallel UPS, use a single residual current circuit breaker upstream of the UPS.

3) Selectivity of distribution after the UPS with inverter short-circuit current (short-circuit with AUX MAINS not present). The rating of the protection can be increased by "n" times downstream a parallel UPS system, with "n" equal to the number of parallel modules.

4) Ik1: phase to neutral, Ik2: phase to phase, Ik3: three-phase to neutral.

Output terminals (mm²)

4 x 300

5. REFERENCE STANDARDS AND DIRECTIVES

5.1 OVERVIEW

The equipment, installed, used and serviced in accordance with its intended use, its regulations and standards, its manufacturer instructions and rules, is in compliance with the relevant Union harmonisation legislation:

LVD 2014 / 35 / EU

DIRECTIVE 2014/35/EU OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of 26 February 2014, on the harmonisation of the laws of the Member States relating to the making available on the market of electrical equipment designed for use within certain voltage limits.

EMC 2014 / 30 / EU

DIRECTIVE 2014/30/EU OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of 26 February 2014, on the harmonisation of the laws of the Member States relating to electromagnetic compatibility.

RoHS 2011/65/EU

Directive 2011/65 of the European parliament and of the council of 8 June 2011 on the restriction of the use of certain hazardous substances in electrical and electronic equipment

5.2 STANDARDS

5.2.1 SAFETY

EN 62040-1 Uninterruptible Power System (UPS) - Part 1: General and safety requirements IEC 62040-1 Uninterruptible Power System (UPS) - Part 1: Safety requirements

5.2.2 ELECTROMAGNETIC COMPATIBILITY

EN 62040-2 Uninterruptible Power System (UPS) - Part 2: Electromagnetic compatibility (EMC) requirements IEC 62040-2 Uninterruptible Power System (UPS) - Part 2: Electromagnetic compatibility (EMC) requirements

5.2.3 ENVIRONMENTAL

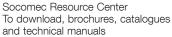
IEC 62040-4 Uninterruptible Power System (UPS) - Part 4: Environmental aspects - Requirements and reporting

5.3 SYSTEM AND INSTALLATION GUIDELINES

When carrying out electrical installation, all the above standards must be observed. All national and international standards (e.g IEC60364) applicable to the specific electrical installation including batteries must be observed. For further information refer to 'Technical specifications' chapter in the user manual.

ELITE UPS: a mark of efficiency

Socomec, as CEMEP UPS manufacturer member, has signed a Code of Conduct put forward by the Joint Research Centre of the European Commission (JRC), to ensure the protection of critical applications and processes ensuring 24/7 continuous high quality supply. The JRC commits to mitigating energy losses and gas emissions caused by UPS equipment, therefore maximising UPS efficiency.



DELPHYS MP Elite+ 80 to 200 kVA

OBJECTIVES

The aim of these specifications is to provide:

- the information required to choose the right uninterruptible power supply for a specific application.
- the information required to prepare the system and installation site.

The specifications are intended for:

- installation engineers.
- design engineers.
- engineering consultants.

INSTALLATION REQUIREMENTS AND PROTECTION

Connection to the mains power supply and to the load(s) must be made using cables of suitable size, in accordance with current standards. If not already present, an electrical control station which can isolate the network upstream of the UPS must be installed. This electrical control station must be equipped with a circuit breaker (or two, if there is a separate bypass line) of an appropriate rating for the power draw at full load.

If an external manual bypass is required, only the model supplied by the manufacturer must be installed.

We recommend fitting two metres of unanchored flexible cable between the UPS output terminals and the cable anchor (wall or cabinet). This makes it possible to move and service the UPS.

For detailed information, see the installation and operating manual.

1. ARCHITECTURE

1.1 RANGE

DELPHYS MP *elite* + is a high performing transformer based UPS designed to secure power supply to critical industrial applications. It is the ideal solution for grouping with generator sets without using an excessively large generator. The isolation transformer installed on the inverter output ensures complete galvanic isolation between DC circuit and load output.

MODELS					-
Rated power (kVA)	80	100	120	160	200
DELPHYS MP elite + 3/3	•	•	•	•	•

Matrix table for model and kVA power rating

DELPHYS MP *elite* + has been specifically designed to meet the demands of loads in specific application contexts, in order to optimise the features of the product and to facilitate its integration within the system.

2. FLEXIBILITY

2.1 POWER RATINGS FROM 80 TO 200 KVA

DIMENSIONS									
Cabinet type	Width (W) [mm]	Depth (D) [mm]	Height (H) [mm]						
	1000	800	1930						

The equipment has been designed with a minimum direct and indirect footprint (the actual space occupied by the unit and the space required around it for maintenance, ventilation and access to the operating mechanisms and communication devices).

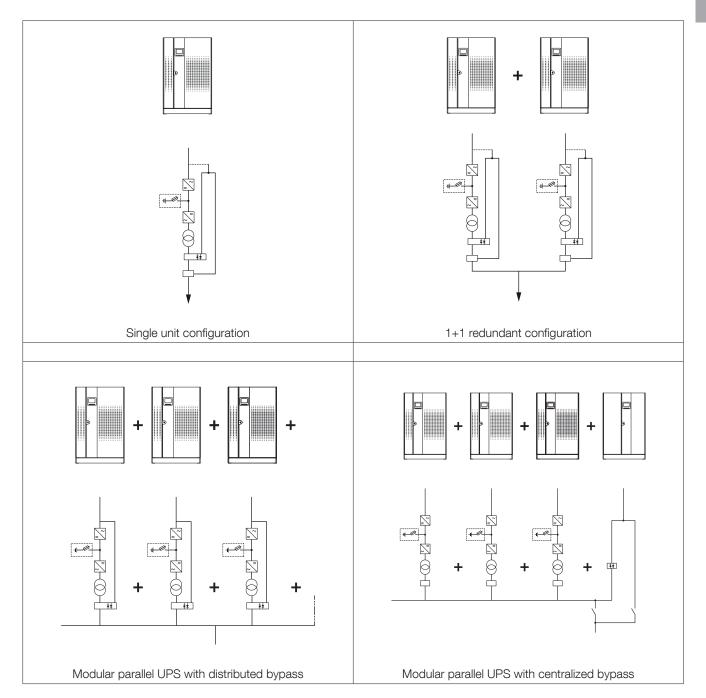
The careful design also provides easy access for maintenance and installation:

• all of the control mechanisms and communication interfaces are located and can be accessed in the front part,

• the air inlet is on the front, with outflow from the upper side; this means other equipment or external battery enclosures can be placed alongside the UPS unit.

2.2 FLEXIBLE BACKUP TIME

Selection of the back-up time is flexible thanks to the wide range of DC bus voltages. The batteries are organised internally into racks based on their relative sizes, so as to ensure a compact unit while still guaranteeing substantial backup times.


2.3 UPS AND SYSTEM ARCHITECTURES

DELPHYS MP *elite* + UPS units (rectifier, battery, inverter and bypass) can be connected in parallel (up to 6 units) with distributed or central bypass.

This solution, which is ideally suited for N+1 redundancy, offers flexible power upgrading and enables stand-alone UPS units to be expanded.

Each single UPS unit has a built-in maintenance bypass (single unit or 1+1 redundant configuration).

It is possible to add an external maintenance bypass, common to all of the UPS units, for maintenance access. A central bypass configuration has a common maintenance bypass for the complete system.

3. STANDARD AND OPTIONS

3.1 PARALLEL SYSTEMS

- Distributed or centralized bypass for parallel architecture up to 6 units.
- Redundant systems ("1+1" and "n+1").
- "2n" architecture with Static Transfer Systems.

3.2 STANDARD ELECTRICAL FEATURES.

- Slots for 3 communication cards.
- Backfeed protection: detection circuit.
- Standard interface:
 - 3 inputs (emergency stop, generating set, battery protection),
 - 4 outputs (general alarm, back-up, bypass, preventative maintenance needs).

3.3 ELECTRICAL OPTIONS.

- EBS⁽¹⁾ (Expert Battery System).
- FLYWHEEL compatible.
- ACS synchronisation system.
- Redundant electronic power supplies.
- Hot plug option (increase the power keeping the load supplied in double conversion).
- Long backup time rectifier.

3.4 MECHANICAL OPTIONS.

- Dust filters.
- Fan redundancy with failure detection.
- Top entry connection.
- Reinforced IP protection up to IP52.

3.5 STANDARD COMMUNICATION FEATURES.

- Multilanguage graphic display.
- Embedded dry contacts.

3.6 COMMUNICATION OPTIONS.

- GTS (Graphic Touch Screen).
- ADC interface (configurable voltage-free contacts).
- MODBUS RTU RS485 or TCP.
- PROFIBUS.
- BACnet/IP interface.
- NET VISION: professional WEB/SNMP Ethernet interface for secure UPS monitoring and remote automatic shutdown.
- NET VISION EMD: Environment Temperature and Humidity sensor with 2 inputs.
- IoT Gateway for Socomec cloud services and SoLive mobile app.
- 3 extra slots for communication cards

3.7 REMOTE MONITORING SERVICE.

- SoLink: Socomec 24/7 Remote Monitoring Service connecting your installation to the nearest Socomec Service Centre.
- SoLive: Mobile app taking the surveillance of all your UPS systems into your smartphone.

(1) Conditions apply

4. SPECIFICATIONS

4.1 INSTALLATION PARAMETERS

INSTALLATION PARAMENT	ERS							
Rated power (kVA)		80	100	120	160	200		
Phase in/out				3/3				
Active power (kW)		72	90	108	144	180		
Rated/maximum rectifier input cur @400V	rent (A)	129/159	162/197	196/235	257/301	297/366		
Rated bypass input current (A)		116	144	174	231	290		
Inverter output current @230V (A)	P/N	116	144	174	231	290		
Maximum air flow (m³/h)			2200		2400			
Sound level (dBA)		6	5	67				
Dissipation at rated load	kW	6.8	7.7	10.1	12.2	18.4		
(minimum mains power present and batteries charged)	kcal/h	5850	6640	8660	10470	15800		
	W (mm)			1000		1		
Dimensions (with standard back-up time)	D (mm)			800				
	H (mm)	1930						
Weight (kg)	740 860 1020)20			

4.2 ELECTRICAL CHARACTERISTICS

ELECTRICAL CHARACTERISTICS - INPUT									
Rated power (kVA)	80 100 120 160 200								
Phase in/out	3/3	3/3	3/3	3/3	3/3				
Rated mains supply voltage	380/400/415 V (208/220/240 V on request)								
Voltage tolerance (ensuring battery recharge)	-10% to +15%(380 V) / ±15% (400 V) / -15% to +10% (415 V)								
Rated frequency	50/60 Hz								
Frequency tolerance			± 5 Hz						
Power factor (input at full load and rated voltage)			0.99						
Total harmonic distortion (THDi)			< 3%						
Max inrush current at start-up		<	In (no overcurrer	nt)					
Soft start		Ę	50 A/sec (settable	e)					

ELECTRICAL CHARACTERISTICS - BYPASS									
Rated power (kVA)	80 100 120 160 200								
Bypass frequency variation speed	2 Hz/s (settable)								
Bypass rated voltage		Rated output voltage ±10% (settable)							
Bypass rated frequency	50/60 Hz (selectable)								
Bypass frequency tolerance	±2 Hz	± 2 Hz (from 0.2 to 4 Hz settable (operation with generator unit))							

ELECTRICAL CHARACTERISTICS - INVERTER										
Rated power (kVA)		80	100	120	160	200				
Rated output voltage (selectable)		380/400/415 V ⁽¹⁾								
Output voltage tolerance		Static: ±1% Dynamic: (0-100% Pn) -4% +2%								
Rated output frequency		50/60 Hz (selectable)								
Autonomous frequency tolerance			0.02	0.02 on mains power failure						
Load crest factor				3:1						
Voltage harmonic distortion				2% on linear loa with non linear						
Overload tolerated by the inverter	10 min.	80	112.5	120	180	200				
(with mains power present) (kW)	1 min.	96	135	144	216	240				

(1) Other voltages on request.

ELECTRICAL CHARACTERISTICS - EFFICIENCY								
Rated power (kVA)	80 100 120 160 200							
Double conversion efficiency (normal mode)	93.5% @ full load							
Efficiency in Eco Mode	98%							

ELECTRICAL CHARACTERISTICS - ENVIRONMENT										
Rated power (kVA)	80 100 120 160									
Storage temperatures	-20 to +70 °C (-4 to 158 °F) (15 to 25 °C for better battery life)									
Working temperature	0 to +40(1) °C (32 to 104(1) °F) (15 to 25 °C for better battery life)									
Maximum relative humidity (non-condensing)	95%									
Maximum altitude without derating			1000 m (3300 ft)						
Degree of protection		IP2	0 (other IP as op	tion)						
Portability			EN 60068-2							
Colour		RAL 9006 (Grey Toyo)								

(1) Conditions apply

4.3 RECOMMENDED PROTECTION DEVICES

RECOMMENDED	PROTECTION DEVIC	ES - RECTIF	IER ⁽¹⁾					
Rated power (kVA)		80	100	120	160 20			
D curve circuit breaker	(A)	160	200	250	300	400		
gG fuse (A)		160	200	250	300	400		
DECOMMENDED	PROTECTION DEVIC)				
Rated power (kVA)		80	100	120	160	200		
		80000	125			200		
Semiconductors characteristics	I^2 t (A ² s)							
	Is/c (A peak)	4000		00		000		
D curve circuit breaker	(A)	160	200	250		00		
gG fuse (A) 160 200 250 400								
RECOMMENDED	PROTECTION DEVIC	ES - INPUT I	RESIDUAL CL	JRRENT CIRC	UIT BREAKE	R ⁽²⁾		
Rated power (kVA)		80	100	120	160	200		
Input residual current c	ircuit breaker			0.5 A				
RECOMMENDED	PROTECTION DEVIC	ES - OUTPU	T (3)					
Rated power (kVA)		80	100	120	160	200		
Short-circuit inverter cu (when AUX MAINS is n	urrent (A) - (0 to 100 ms) ot present)	485	62	20	1060			
C curve circuit breaker	³⁾ (A)	40	5	0	1	00		
High-speed fuse ⁽³⁾ (A)		80	12	25	2	50		
CABLES - MAXIMI	JM CABLE SECTION	J						
Rated power (kVA)		80	100	120	160	200		
Rectifier terminals								
Bypass terminals		Copper bar 63 x 4 mm (2x120 mm)						
Battery terminals			Copper b	ar 40 x 5 mm (2)	k240 mm)			
Output terminals			Copper b	ar 63 x 4 mm (2)	k120 mm)			

(1) Rectifier protection should only be considered in the event of separate inputs. The bypass protection is given by recommendation. When the bypass and rectifier inputs are combined (common input), the general input protection rating must be the highest of both (bypass or rectifier).

(2) Must be selective with residual current circuit breakers downstream of the UPS connected to the UPS output. If the bypass network is separate from the rectifier circuit, or in the event of parallel UPS, use a single residual current circuit breaker upstream of the UPS.

(3) Selectivity of distribution after the UPS with inverter short-circuit current (short-circuit with AUX MAINS not present). The rating of the protection can be increased by "n" times downstream a parallel UPS system, with "n" equal to the number of parallel modules.

5. REFERENCE STANDARDS AND DIRECTIVES

5.1 OVERVIEW

The equipment, installed, used and serviced in accordance with its intended use, its regulations and standards, its manufacturer instructions and rules, is in compliance with the relevant Union harmonisation legislation:

LVD 2014 / 35 / EU

DIRECTIVE 2014/35/EU OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of 26 February 2014, on the harmonisation of the laws of the Member States relating to the making available on the market of electrical equipment designed for use within certain voltage limits.

EMC 2014 / 30 / EU

DIRECTIVE 2014/30/EU OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of 26 February 2014, on the harmonisation of the laws of the Member States relating to electromagnetic compatibility.

RoHS 2011/65/EU

Directive 2011/65 of the European parliament and of the council of 8 June 2011 on the restriction of the use of certain hazardous substances in electrical and electronic equipment

5.2 STANDARDS

5.2.1 SAFETY

EN 62040-1 Uninterruptible Power System (UPS) - Part 1: General and safety requirements

IEC 62040-1 Uninterruptible Power System (UPS) - Part 1: Safety requirements

5.2.2 ELECTROMAGNETIC COMPATIBILITY

EN 62040-2 Uninterruptible Power System (UPS) - Part 2: Electromagnetic compatibility (EMC) requirements IEC 62040-2 Uninterruptible Power System (UPS) - Part 2: Electromagnetic compatibility (EMC) requirements

5.2.3 ENVIRONMENTAL

IEC 62040-4 Uninterruptible Power System (UPS) - Part 4: Environmental aspects - Requirements and reporting

5.3 SYSTEM AND INSTALLATION GUIDELINES

When carrying out electrical installation, all the above standards must be observed. All national and international standards (e.g. IEC60364) applicable to the specific electrical installation including batteries must be observed. For further information refer to 'Technical specifications' chapter in the user manual.

MASTERYS IP+ 10 to 80 kVA

Socomec Resource Center To download, brochures, catalogues and technical manuals

OBJECTIVES

The aim of these specifications is to provide:

- the information required to choose the right uninterruptible power supply for a specific application.
- the information required to prepare the system and installation site.

The specifications are intended for:

- installation engineers.
- design engineers.
- engineering consultants.

INSTALLATION REQUIREMENTS AND PROTECTION

Connection to the mains power supply and to the load(s) must be made using cables of suitable size, in accordance with current standards. If not already present, an electrical control station which can isolate the network upstream of the UPS must be installed. This electrical control station must be equipped with a circuit breaker (or two, if there is a separate bypass line) of an appropriate rating for the power draw at full load.

If an external manual bypass is required, only the model supplied by the manufacturer must be installed.

We recommend fitting two metres of unanchored flexible cable between the UPS output terminals and the cable anchor (wall or cabinet). This makes it possible to move and service the UPS.

For detailed information, see the installation and operating manual.

1. ARCHITECTURE

1.1 RANGE

MASTERYS IP+ is a full range of high performing UPS designed to provide reliable power supply in harsh operating environments.

MODELS							
Rated power (kVA)	10	15	20	30	40	60	80
MASTERYS IP+ 3/1	•	•	•	•	•	•	-
MASTERYS IP+ 3/3	•	•	•	•	٠	•	•

Matrix table for model and kVA power rating

Each range has been specifically designed to meet the demands of loads in specific application contexts, in order to optimise the features of the product and to facilitate its integration within the system.

2. FLEXIBILITY

2.1 POWER RATINGS FROM 10 TO 80 KVA

The entire range (13 basic products) are compatible with 2 cabinets.

DIMENSIONS					
Model	Cabinet type	Width (W) [mm]	Depth (D) [mm]	Height (H) [mm]	
MASTERYS IP+ 10 kVA 3/1-3/3					
MASTERYS IP+ 15 kVA 3/1-3/3					
MASTERYS IP+ 20 kVA 3/1-3/3	Н	600	800	1400	
MASTERYS IP+ 30 kVA 3/1-3/3	W				
MASTERYS IP+ 40 kVA 3/3					
MASTERYS IP+ 40 kVA 3/1					
MASTERYS IP+ 60 kVA 3/1-3/3	H	1000	835	1400	
MASTERYS IP+ 80 kVA 3/1-3/3	W				

The equipment has been designed with a minimum direct and indirect footprint (the actual space occupied by the unit and the space required around it for maintenance, ventilation and access to the operating mechanisms and communication devices).

The careful design also provides easy access for maintenance and installation.

All of the control mechanisms and communication interfaces are located in the front part inside to metal door.

The air inlet is on the front, with outflow to the rear only; this means other equipment or external battery enclosures can be placed alongside the UPS unit.

2.2 FLEXIBLE BACK-UP TIME

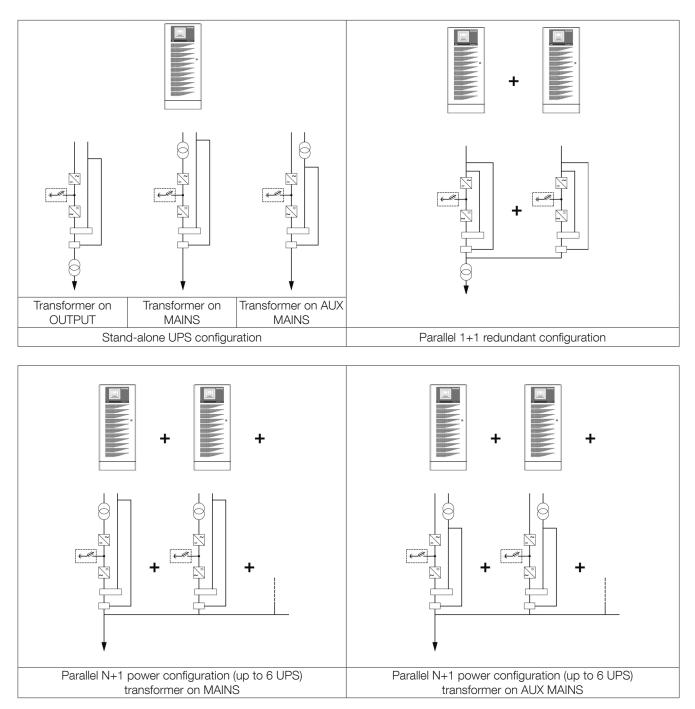
Different extended back-up times are possible by using voth UPS cabinet, both of which occupy minimum floor space. For powers greater than or equal to 40 kVA, or long back-up power periods, an additional cabinet should be used, optionally with a supplementary battery charger.

BACK-UP TIMES IN	MINUTES (MAX @ 70% OF I	LOAD)			
			· ·		
	Masterys IP+ 10 to 40 kVA	Masterys IP+ 40 to 80 kVA	UPS with battery cabinet		
MASTERYS IP+ 10 3/1	19	-	•		
MASTERYS IP+ 15 3/1	11	-	•		
MASTERYS IP+ 20 3/1	7	-	•		
MASTERYS IP+ 30 3/1	4	-	•		
MASTERYS IP+ 40 3/1	-	-	•		
MASTERYS IP+ 60 3/1	-	-	•		
MASTERYS IP+ 10 3/3	19	-	•		
MASTERYS IP+ 15 3/3	11	-	•		
MASTERYS IP+ 20 3/3	7	-	•		
MASTERYS IP+ 30 3/3	4	-	•		
MASTERYS IP+ 40 3/3	-	-	•		
MASTERYS IP+ 60 3/3	-	-	•		
MASTERYS IP+ 80 3/3	-	-	•		

Selection of the back-up time is flexible thanks to the wide range of DC bus voltages.

The batteries are organised internally into racks based on their relative sizes, so as to ensure a compact unit while still guaranteeing substantial back-up times.

The UPS system's internal batteries consist of distinct strings of battery packs connected in series; each individual pack is connected using polarised connectors to facilitate battery configuration and maintenance.


Each pack is sealed in an acid-proof container which is designed to prevent damage in the case of acid leakage.

To guarantee maximum back-up time availability and battery life, the Masterys series is equipped with EBS systems, depending on the model.

2.3 PARALLEL CONFIGURATION.

MASTERYS IP+ offers various configurations.

2.4 AVAILABILITY, REDUNDANCY AND EFFICIENCY

To increase the availability of the power supply, redundant parallel configurations are becoming increasingly common. Consequently, the overall efficiency of the UPS system risks being reduced due to the low load on each individual machine.

MASTERYS IP+ 10 to 80 kVA

3. STANDARD AND OPTIONS

3.1 FOR INDUSTRIAL LOADS

- 100 % non-linear loads.
- 100 % unbalanced loads.
- 100 % "6-pulse" loads (motor speed drivers, welding equipment, power supplies...).
- Motors, lamps, capacitive loads.

3.2 STANDARD ELECTRICAL FEATURES

- Dual input mains.
- Internal maintenance bypass.
- Backfeed protection: detection circuit.
- EBS (Expert Battery System) for battery management.

3.3 ELECTRICAL OPTIONS.

- Long-life batteries.
- External battery cabinet (degree of protection up to IP32).
- External temperature sensor.
- Additional battery chargers.
- Additional transformer.
- Parallel kit.
- Cold start.
- ACS synchronization system.
- Neutral creation kit for mains without neutral.
- Tropicalization and anti-corrosion protection for electrical boards.

3.4 STANDARD COMMUNICATION FEATURES.

- Multilanguage graphic display.
- Dry contact interface.
- MODBUS RTU.
- Embedded LAN interface (web pages, email).
- 2 slots for communication options.

3.5 COMMUNICATION OPTIONS.

- Profibus.
- MODBUS TCP.
- NET VISION: professional WEB/SNMP interface for UPS monitoring and shutdown management of several operating systems.

3.6 REMOTE MONITORING SERVICE.

• SoLink, remote monitoring service that connects your UPS to your Critical Power specialist 24/7.

4. SPECIFICATIONS

4.1 INSTALLATION PARAMETERS

INSTALLATION PARAMENTERS															
Rated power (kVA)		10	15	20	30	10	15	20	30	40	40	60	60	80	
Phase in/out			3/	/1				3/3			3	/1	3,	3/3	
Active power (kW)		9	13.5	18	27	9	13.5	18	27	36	32	48	48	64	
Rated/maximum rectifie current (EN 62040-3) (A		14/ 17 ⁽¹⁾			14/ 17	21/ 25	28/ 34	42/ 50	56/ 67	52/ 70 ⁽¹⁾	78/ 100 ⁽¹⁾	78/ 100	106/ 133		
Rated bypass input cur	rent (A)	44(1)	65(1)	87(1)	131 ⁽¹⁾	15(2)	22(2)	29(2)	44(2)	58(2)	174(1)	261(1)	87(2)	116(2)	
Inverter output current @230 V (A) P/N		44	65	87	131	15	22	29	44	58	174	261	87	116	
Maximum air flow (m3/h	1)					440				1810					
Sound level (dB)					50	55			62						
Dissipation at rated	(VV)	890	1335	1780	2670	890	1335	1780	2670	3560	4364	5933	6100	8100	
load (minimum mains power present and	(kcal/h)	765	1148	1531	2296	765	1148	1531	2296	3062	3753	5102	5250	6970	
batteries charged)	(BTU/h)	3035	4553	6071	9106	3035	4553	6071	9106	12141	14880	20230	20820	27650	
Dimensions	W (mm)					600						10	00		
(with standard back-up	D (mm)					800						83	30		
time)	H (mm)					1400			~		1400				
Weight (kg)		230	250	270	330	230	250	270	320	370	490	540	500	550	

(1) Input current in bypass mode is single-phase. Consequently, the rated current of the neutral and of the phase common to the bypass is three times higher than the current drawn during normal operation by the rectifier.

(2) In the case of single-phase distorting loads downstream of the UPS, when the bypass is in operation the neutral current can be 1.5-2 times higher than the phase current; this is due to the harmonic current distortion produced by the load itself, which is no longer corrected by the UPS rectifier as occurs in normal operation.

4.2 ELECTRICAL CHARACTERISTICS

ELECTRICAL CHARACTERISTICS - INPUT													
Rated power (kVA)	10	15	20	30	10	15	20	30	40	40	60	60	80
Phase in/out		3/	/1				3/3		3/1		3/3		
Rated mains supply voltage		400 V 3ph + N											
Voltage tolerance		-15% to +20% (pf 0.9) -20% to +20% (pf 0.9) -20% to +20% (pf 0.8) -35% to +20% @ 70% Up to -40% to 50% of rated power (pf 0.9) rated power (pf 0.8)											0% of
Rated frequency						50/60	Hz (sele	ectable)					
Frequency tolerance							±10%						
Power factor (input at full load and rated voltage)							≥ 0.99						
Total harmonic distortion (THDi)		< 3% < 7%											
Max inrush current at start-up						< ln (n	o overc	urrent)					

ELECTRICAL CHARACTER	RISTIC	S - B)	PASS	;										
Rated power (kVA)	10	15	20	30	10	15	20	30	40	40	60	60	80	
Phase in/out		3,	/1				3/3		3/1		3/3			
Bypass frequency variation speed		1 Hz/s - 3 Hz/s												
Bypass rated voltage					Non	ninal ou	itput vo	ltage ±1	15%					
Bypass rated frequency (se- lectable)						5	50/60 H	Z						
Bypass frequency tolerance			±	2% (froi	n ±1%	to ±8%	(opera	tion with	n gener	ator uni	t))			

ELECTRICAL CHARACTERISTICS - INVERTER														
Rated power (kVA)		10	15	20	30	10	15	20	30	40	40	80		
Phase in/out			3/1 3/3 3/1									3	3/3	
Rated output voltage (selec	table)		208 ⁽¹⁾ /220/230/240 V (1ph) 380/400/415 V (3ph)											
Output voltage tolerance			Static: ±1%											
Rated output frequency (selectable)			50/60 Hz											
Output frequency tolerance	9					±0.01	1% (on	mains	power 1	failure)				
Load crest factor								3:1						
Voltage harmonic distortion	1						< 1% \	vith line	ear loac	1				
Overload tolerated by the	10 min	10 kW	15 kW	20 kW	30 kW	10 kW	15 kW	20 kW	30 kW	40 kW	40 kW	60 kW	60 kW	80 kW
inverter ⁽²⁾	1 min	12 kW	18 kW	24 kW	36 kW	12 kW	18 kW	24 kW	36 kW	48 kW	48 kW	72 kW	72 kW	96 kW

(1) @ 208 V Pout = 90% Pnom, (2) @ pf 0.9 (10 to 30 kVA 3/1, 10 to 40 kVA 3/3), @ pf 0.8 (40 and 60 kVA 3/1, 60 and 80 kVA 3/3)

ELECTRICAL CHARACTERISTICS - EFFICIENCY													
Rated power (kVA)	10	15	20	30	10	15	20	30	40	40	60	60	80
Phase in/out		3/	/1				3/3		3/1		3/3		
Double conversion efficiency (nor- mal mode) at rated load, transfo on the output	91% 89%												
Double conversion efficiency (nor- mal mode) at rated load, transfo on bypass		95	5%				94%		93	3%	92%		

ELECTRICAL CHARACTERIS	TICS ·	· EFFI	CIEN	CY									
Rated power (kVA)	10	15	20	30	10	15	20	30	40	40	60	60	80
Phase in/out		3/	/1				3/3			3/1		3/3	
Storage temperatures	-5 to +45 °C (23 to 113 °F) (15 to 25 °C for better battery life)												
Working temperature	0 to +50 ⁽¹⁾ $^{\circ}$ C (32 to 122 $^{\circ}$ F) (15 to 25 $^{\circ}$ C for better battery life)												
Maximum relative humidity (non- condensing)	95%												
Maximum altitude without derating						1000) m (33	800 ft)					
Degree of protection	IP31 and IP52 IP31												
Portability			А	STM D	999-08	, ASTN	1 D-880), AFN	OR NF	H 00-0	42		
Colour	RAL 7012												

(1) Conditions apply.

4.3 RECOMMENDED PROTECTION DEVICES

RECOMMENDED PROTECTIO	ON DE		S - RE	CTIFI	E R (1)								
Model IP+	10	15	20	30	10	15	20	30	40	40	60	60	80
Phase in/out	3/1					3/3	3/3		3/1		3/3		
D curve circuit breaker (A)	32		40	63	3	2	40	63	80	80	125	125	160
gG fuse (A)	32		40	63	3	2	40	63	80	125	160	125	160
							1)						
RECOMMENDED PROTECTIO					_								
Model IP+	10	15	20	30	10	15	20	30	40	40	60	60	80
Phase in/out Maximum I ² t supported by the		3/	/1				3/3			3/	′1	3	/3
bypass (A ² s)		80000		125000		8000		150	000	320000	500000	80000	125000
Icc max (A)		4000		5000		1200		17	00	8000	10000	4000	4000
RECOMMENDED PROTECTIO			2 101		Feini				DOLU	тррг		(2)	
					_				_	1			
Model IP+	10	15	20	30	10	15	20	30	40	40	60	60	80
Phase in/out Input residual current circuit	3/1	3/1	3/1	3/1	3/3	3/3	3/3	3/3	3/3	3/1	3/1	3/3	3/3
breaker						> 0.5	5 A Sele	ective					
RECOMMENDED PROTECTIO	on de		S - OL	JTPUT									
Model IP+	10	15	20	30	10	15	20	30	40	40	60	60	80
Phase in/out		3,	/1	1		1	3/3	1	1	3	/1	3	3/3
C curve circuit breaker ⁽³⁾ (A)	< 10	< 16	< 20	< 32	<	4	< 6	< 10	< 13	< 32	< 50	< 20	< 40
B curve circuit breaker ⁽³⁾ (A)	< 20	< 32	< 40	< 63	<	< 8		< 20	< 25	< 63	< 100	-	-
High-speed fuse ⁽³⁾ (A)	< 12	< 18	< 24	< 36	<	6	< 10	< 12	< 16	< 40	< 63	< 32	< 25
CABLES - MAXIMUM CABLE	SECT	ION											
Model IP+	10	15	20	30	10	15	20	30	40	40	60	60	80
Phase in/out		3,	/1				3/3		1	3	/1	3	3/3
		4x CE	3D 35						4x CBD 50				
Rectifier terminals		mm2 (fle		,						mm2 (fl		,	
	50) mm2 (r 2x CE	-	ne)							0 mm2 (
	35 ו	mm2 (fle		able)							CB 120		BD 50
Bypass terminals	50) mm2 (r		ole)							mm2 e cable)		mm2 e cable)
	50		3D 50								mm2		mm2
		mm2 (fle) mm2 (r					x CBD 3 2 (flexibl	35 le cable)		(rigid	cable)	(rigid	cable)
	10		3D 35	10)			n2 (rigid				4x C	BD 70	
Battery terminals	35 ו	mm2 (fle	exible ca	able)			-			70	mm2 (fl	exible ca	able)
	50) mm2 (r	igid cab	ole)							5 mm2 (, č	,
		2∨ ∩⊑	3D 50								CB 120 mm2		BD 50 mm2
Output terminals	50 ו	2x 0₫ mm2 (fle		able)							e cable)		e cable)
) mm2 (r									xible cable) (flexible cab 185 mm2 70 mm2		,
									(rigid	cable)	(rigid	cable)	

(1) Rectifier protection should only be considered in the event of separate inputs. The bypass protection is given by recommendation. When the bypass and rectifier inputs are combined (common input), the general input protection rating must be the highest of both (bypass or rectifier).

(2) Must be selective with residual current circuit breakers downstream of the UPS connected to the UPS output. If the bypass network is separate from the rectifier circuit, or in the event of parallel UPS, use a single residual current circuit breaker upstream of the UPS.

(3) Selectivity of distribution after the UPS with inverter short-circuit current (short-circuit with AUX MAINS not present). The rating of the protection can be increased by "n" times downstream a parallel UPS system, with "n" equal to the number of parallel modules.

(4) Selectivity of distribution after the UPS with inverter short-circuit current (with AUX MAINS not present).

5. REFERENCE STANDARDS AND DIRECTIVES

5.1 OVERVIEW

The equipment, installed, used and serviced in accordance with its intended use, its regulations and standards, its manufacturer instructions and rules, is in compliance with the relevant Union harmonisation legislation:

LVD 2014 / 35 / EU

DIRECTIVE 2014/35/EU OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of 26 February 2014, on the harmonisation of the laws of the Member States relating to the making available on the market of electrical equipment designed for use within certain voltage limits.

EMC 2014 / 30 / EU

DIRECTIVE 2014/30/EU OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of 26 February 2014, on the harmonisation of the laws of the Member States relating to electromagnetic compatibility.

RoHS 2011/65/EU

Directive 2011/65 of the European parliament and of the council of 8 June 2011 on the restriction of the use of certain hazardous substances in electrical and electronic equipment

5.2 STANDARDS

5.2.1 SAFETY

EN 62040-1 Uninterruptible Power System (UPS) - Part 1: General and safety requirements (certified by TÜV SÜD) IEC 62040-1 Uninterruptible Power System (UPS) - Part 1: Safety requirements

5.2.2 ELECTROMAGNETIC COMPATIBILITY

- EN 62040-2 Uninterruptible Power System (UPS) Part 2: Electromagnetic compatibility (EMC) requirements (C3 category)
- IEC 62040-2 Uninterruptible Power System (UPS) Part 2: Electromagnetic compatibility (EMC) requirements

5.2.3 TEST AND PERFORMANCE

EN 62040-3 Uninterruptible power systems (UPS). Methods of specifying the performance and test requirements

5.2.4 DEGREES OF PROTECTION

EN 60529 Degrees of protection provided by enclosures

5.3 SYSTEM AND INSTALLATION GUIDELINES

When carrying out electrical installation, all the above standards must be observed. All national and international standards (e.g IEC60364) applicable to the specific electrical installation including batteries must be observed. For further information refer to 'Technical specifications' chapter in the user manual.

DELPHYS MX 250 to 900 kVA

Socomec Resource Center To download, brochures, catalogues and technical manuals

OBJECTIVES

The aim of these specifications is to provide:

- the information required to choose the right uninterruptible power supply for a specific application.
- the information required to prepare the system and installation site.

The specifications are intended for:

- installation engineers.
- design engineers.
- engineering consultants.

INSTALLATION REQUIREMENTS AND PROTECTION

Connection to the mains power supply and to the load(s) must be made using cables of suitable size, in accordance with current standards. If not already present, an electrical control station which can isolate the network upstream of the UPS must be installed. This electrical control station must be equipped with a circuit breaker (or two, if there is a separate bypass line) of an appropriate rating for the power draw at full load.

If an external manual bypass is required, only the model supplied by the manufacturer must be installed.

We recommend fitting two metres of unanchored flexible cable between the UPS output terminals and the cable anchor (wall or cabinet). This makes it possible to move and service the UPS.

For detailed information, see the installation and operating manual.

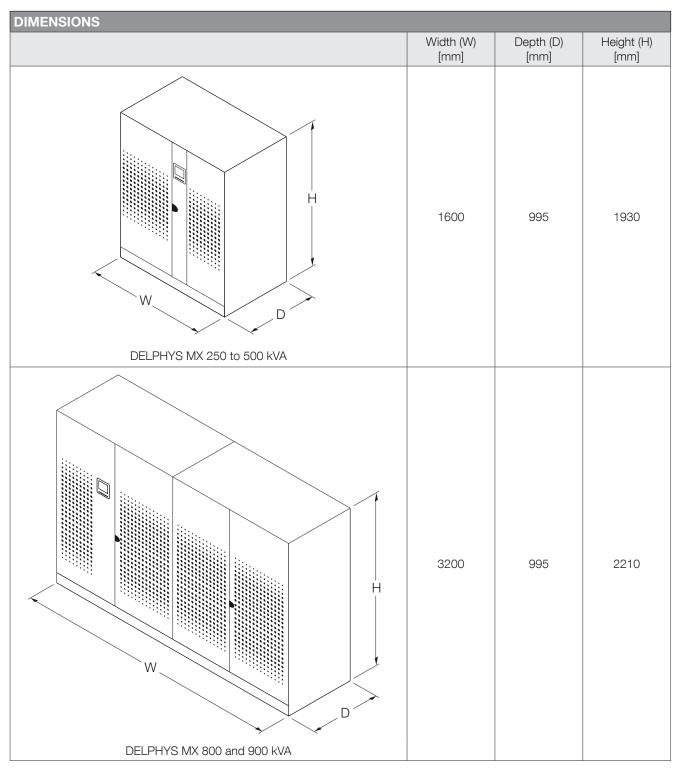
1. ARCHITECTURE

1.1 RANGE

DELPHYS MX is a high performing transformer based UPS designed to secure power supply to critical industrial applications up to 5.4 MVA.

The isolation transformer installed on the inverter output ensures complete galvanic isolation between DC circuit and load output.

MODELS						
Rated power (kVA)	250	300	400	500	800	900
DELPHYS MX 3/3	٠	٠	٠	٠	٠	•


Matrix table for model and kVA power rating

DELPHYS MX has been specifically designed to meet the demands of loads in specific application contexts, in order to optimise the features of the product and to facilitate its integration within the system.

2. FLEXIBILITY

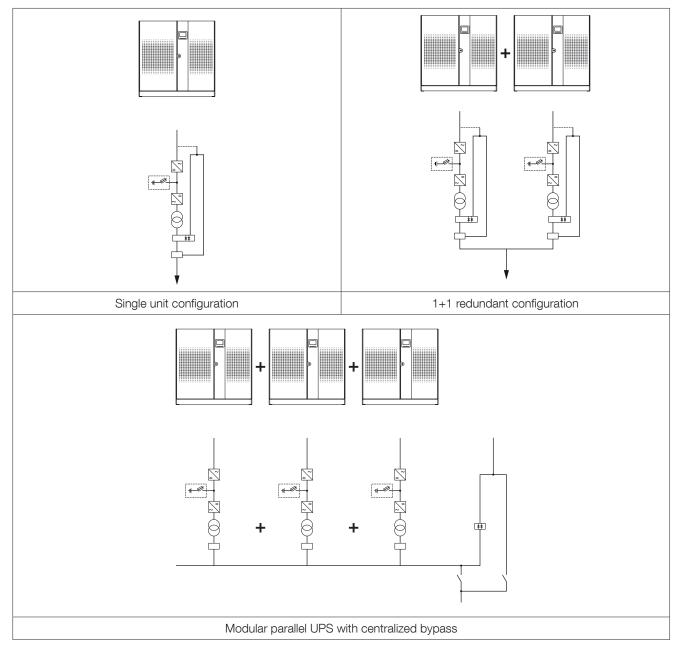
2.1 POWER RATINGS FROM 250 TO 900 KVA

The equipment has been designed with a minimum direct and indirect footprint (the actual space occupied by the unit and the space required around it for maintenance, ventilation and access to the operating mechanisms and communication devices).

The careful design also provides easy access for maintenance and installation:

- all of the control mechanisms and communication interfaces are located and can be accessed in the front part,
- the air inlet is on the front, with outflow from the upper side; this means other equipment or external battery enclosures can be placed alongside the UPS unit.

2.2 FLEXIBLE BACKUP TIME


Selection of the back-up time is flexible thanks to the wide range of DC bus voltages. The batteries are organised internally into racks based on their relative sizes, so as to ensure a compact unit while still guaranteeing substantial backup times. To guarantee maximum back-up time availability and battery life, the DELPHYS MX includes:

EBS (Expert Battery System), smart battery charging management.

2.3 PARALLEL

DELPHYS MX UPS units (rectifier, battery, inverter and bypass) can be connected in parallel (up to 6 units) with distributed or central bypass. This solution, which is ideally suited for 1+1 redundancy, offers flexible power upgrading and enables stand-alone UPS units to be expanded. Each single UPS unit has a built-in maintenance bypass (single unit or distributed bypass).

It is possible to add an external maintenance bypass, common to all of the UPS units, for maintenance access.

3. STANDARD AND OPTIONS

3.1 STANDARD ELECTRICAL FEATURES.

- Backfeed protection: detection circuit.
- Standard interface:
- 3 inputs (emergency stop, generating set, battery protection),
- 4 outputs (general alarm, back-up, bypass, preventative maintenance needs).
- EBS (Expert Battery System).

3.2 ELECTRICAL OPTIONS.

- EBS (Expert Battery System).
- FLYWHEEL compatible.
- ACS synchronisation system.
- Redundant electronic power supplies.

3.3 MECHANICAL OPTIONS.

- Reinforced IP protection degree.
- Ventilation filters.
- Redundant ventilation with failure detection.
- Top entry connection.

3.4 STANDARD COMMUNICATION FEATURES.

- Multilanguage graphic display.
- Embedded dry contacts.

3.5 COMMUNICATION OPTIONS.

- GTS (Graphic Touch Screen).
- ADC interface (configurable voltage-free contacts).
- MODBUS RTU RS485 or TCP.
- PROFIBUS/PROFINET.
- BACnet/IP interface
- NET VISION: professional WEB/SNMP Ethernet interface for secure UPS monitoring and remote automatic shutdown.
- NET VISION EMD: Environment Temperature and Humidity sensor with 2 inputs.
- IoT Gateway for Socomec cloud services and SoLive mobile app.

3.6 REMOTE MONITORING SERVICE.

- SoLink: Socomec 27/4 Remote Monitoring Service connecting your installation to the nearest Socomec Service Centre.
- SoLive: Mobile app taking the surveillance of all your UPS systems into your smartphone.

4. SPECIFICATIONS

4.1 INSTALLATION PARAMETERS

INSTALLATION PARAMETERS							
Rated power (kVA)		250	300	400	500	800	900
Phase in/out				3	3/3		<u>.</u>
Active power (kW)		225	270	360	450	720	810
Rated/maximum rectifier input curr	rent (A)	374/478	453/543	598/705	780/889	1273/1547	1428/1611
Rated bypass input current (A)		362	433	580	722	1155	1300
Inverter output current @230V (A) I	⊃/N	361	433	577	722	1155	1300
Maximum air flow (m³/h)			61	14600			
Sound level (dBA)		≤ 70 ≤ 72			≤ 75		
Dissipation at rated load	W	17200	20630	27300	34000	48000	53000
(minimum mains power present	kcal/h	14800	17730	23250	29260	41310	45610
and batteries charged)	BTU/h	58730	70357	92262	116111	163928	180992
	W (mm)	1600				3200	
Dimensions (with standard back-up time)	D (mm)		99	95		9	95
	H (mm)		19	30		2210	
Weight	kg	25	00	2800	3300	59	900

4.2 ELECTRICAL CHARACTERISTICS

ELECTRICAL CHARACTERISTICS - INPUT							
Rated power (kVA)	250	300	400	500	800	900	
Phase in/out			3	3/3			
Rated mains supply voltage			380/40	0/415 V			
Voltage tolerance (ensuring battery recharge)		340 to 460 V 360 to 460 V					
Rated frequency			50/6	60 Hz			
Frequency tolerance			±	5%			
Power factor (input at full load and rated voltage)		0.	93		0.	.94	
Total harmonic distortion (THDi)		< 4	.5%		<	5%	
Max inrush current at start-up			<in (no="" o<="" td=""><td>vercurrent)</td><td></td><td></td></in>	vercurrent)			
Soft start			50 A/sec	: (settable)			
ELECTRICAL CHARACTERISTICS -	CS - BYPASS						
Rated power (kVA)	250	250 300 400 500 800 900					
Bypass frequency variation speed		2 Hz/s settable					

Bypass frequency variation speed	2 Hz/s settable			
Bypass rated voltage	Rated output voltage ±10%			
Bypass rated frequency	50/60 Hz selectable			
Bypass frequency tolerance	± 2 Hz (from 0.2 to 4 Hz settable (operation with generator unit))			

ELECTRICAL CHARACTERISTICS - INVERTER								
Rated power (kVA)	250	300	400	500	800	900		
Rated output voltage (selectable)			380/40	0/415 V				
Output voltage tolerance	Static: < 1% Dynamic: (0-100% Pn) ±2%							
Rated output frequency	50/60 Hz (selectable)							
Output frequency tolerance	0.02 on mains power failure							
Load crest factor	3:1							
Voltage harmonic distortion (ThdU)	< 2% on linear load < 4% on distorting load (Ph/N)				listorting load			
Overload tolerated by the inverter (with mains power present)	125% x 10 min 150% x 1 min							

ELECTRICAL CHARACTERISTICS - EFFICIENCY						
Rated power (kVA)	250 300 400 500 800 900					
Double conversion efficiency (normal mode)	93.5% at full load					
Efficiency in Eco Mode			98	3%		

ELECTRICAL CHARACTERISTICS - ENVIRONMENT								
Rated power (kVA)	250 300 400 500 800 900							
Storage temperatures		-20 to +70	°C (-4 to 1	58 °F) (15 t	to 25 °C for	better battery life)		
Working temperature	0 to +35 °C (32 to 95 °F) (15 to 25 °C for better battery life) 0 to +35 °C (32 to 95 °F) ⁽¹⁾ (15 to 25 °C for better battery life)							
Maximum relative humidity (non-condensing)				95%	, D			
Maximum altitude without derating				1000 m (3	300 ft)			
Degree of protection	IP20 (up to IP52 optional)							
Portability	EN 60068-2							
Colour			R	AL 9006 (G	arey Toyo)			

(1) Conditions apply.

4.3 RECOMMENDED PROTECTION DEVICES

Rated power (kVA)		250	300	400	500	800	900
D curve circuit brea	aker (A)	63	30	800	1000	16	600
RECOMMENDED PROTECTION DEVICES - GENERAL BYPASS ⁽¹⁾							
Rated power (kVA)	FROILONION DE	250	300	400	500	800	900
		200			500		
Semiconductors	12t (A2s)		2250	0000		5120	0000
characteristics	ls/c (A peak)		145	500		300	000
D curve circuit breake	er (A)	63	30	80	00	1250	1600
BECOMMENDED	PROTECTION DE	VICES - INF	PUT RESIDI	JAL CURRE		T BRFAKER	(2)
Rated power (kVA)		250	300	400	500	800	900
Input residual current	circuit breaker	300 mA					
BECOMMENDED	PROTECTION DE	VICES - OU					
Rated power (kVA)		250	300	400	500	800	900
Short-circuit inverter cu (when AUX MAINS is	urrent (A) - (0 to 100 ms)	16	00	2000	2900	4000	
C curve circuit breake		16	60	200	250	4(00
High-speed fuse ⁽³⁾ (A)		40	00	500	700	800	
CABLES - MAXIN	IUM CABLE SECT	ION					
Rated power (kVA)		250	300	400	500	800	900
Rectifier terminals							
Bypass terminals			Osasas	(0 0.00 ⁰)		Osmanl	(4.000
Battery terminals		- Copper bar (3x300 mm²) Copper bar (4x300				(4x300 mm²)	

(1) Rectifier protection should only be considered in the event of separate inputs. The bypass protection is given by recommendation. When the bypass and rectifier inputs are combined (common input), the general input protection rating must be the highest of both (bypass or rectifier).

(2) Must be selective with residual current circuit breakers downstream of the UPS connected to the UPS output. If the bypass network is separate from the rectifier circuit, or in the event of parallel UPS, use a single residual current circuit breaker upstream of the UPS.

(3) Selectivity of distribution after the UPS with inverter short-circuit current (short-circuit with AUX MAINS not present). The rating of the protection can be increased by "n" times downstream a parallel UPS system, with "n" equal to the number of parallel modules.

Output terminals

5. REFERENCE STANDARDS AND DIRECTIVES

5.1 OVERVIEW

The equipment, installed, used and serviced in accordance with its intended use, its regulations and standards, its manufacturer instructions and rules, is in compliance with the relevant Union harmonisation legislation:

LVD 2014 / 35 / EU

DIRECTIVE 2014/35/EU OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of 26 February 2014, on the harmonisation of the laws of the Member States relating to the making available on the market of electrical equipment designed for use within certain voltage limits.

EMC 2014 / 30 / EU

DIRECTIVE 2014/30/EU OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of 26 February 2014, on the harmonisation of the laws of the Member States relating to electromagnetic compatibility.

RoHS 2011/65/EU

Directive 2011/65 of the European parliament and of the council of 8 June 2011 on the restriction of the use of certain hazardous substances in electrical and electronic equipment

5.2 STANDARDS

5.2.1 SAFETY

EN 62040-1 Uninterruptible Power System (UPS) - Part 1: General and safety requirements

IEC 62040-1 Uninterruptible Power System (UPS) - Part 1: Safety requirements

5.2.2 ELECTROMAGNETIC COMPATIBILITY

EN 62040-2 Uninterruptible Power System (UPS) - Part 2: Electromagnetic compatibility (EMC) requirements IEC 62040-2 Uninterruptible Power System (UPS) - Part 2: Electromagnetic compatibility (EMC) requirements

5.2.3 ENVIRONMENTAL

IEC 62040-4 Uninterruptible Power System (UPS) - Part 4: Environmental aspects - Requirements and reporting

5.3 SYSTEM AND INSTALLATION GUIDELINES

When carrying out electrical installation, all the above standards must be observed. All national and international standards (e.g IEC60364) applicable to the specific electrical installation including batteries must be observed. For further information refer to 'Technical specifications' chapter in the user manual.

DELPHYS XL High Power UPS from 1 to 4 MW and 1.2 to 4.8 MW

Socomec Resource Center To download, brochures, catalogues and technical manuals

OBJECTIVES

The aim of these specifications is to provide the information required to prepare the system and installation site.

The specifications are intended for:

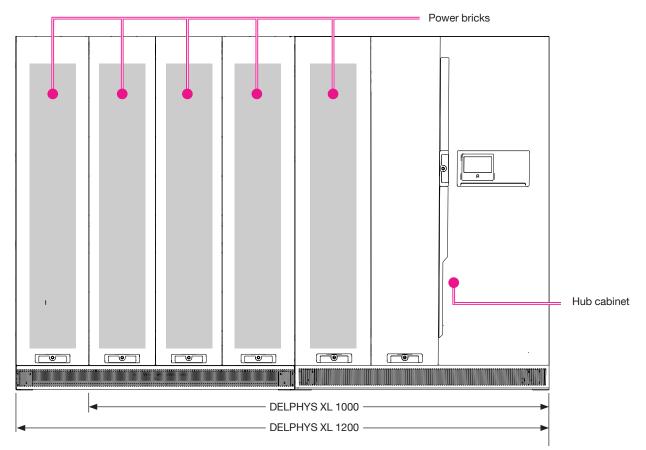
- installation engineers,
- design engineers,
- engineering consultants.

INSTALLATION REQUIREMENTS AND PROTECTION

Connections to the mains power supply and to the load(s) must be implemented using cables of suitable size, in accordance with current standards. If there is no electrical control station present that can isolate the network upstream of the UPS, one must be installed. This electrical control station must be equipped with a protective device (or two, if there is a separate bypass line) with an appropriate rating for the power draw at full load.

For detailed information, see the installation and operating manual.

1. ARCHITECTURE


1.1 RANGE

Delphys XL is a high performance UPS designed to secure highly critical applications and therefore to ensure business continuity by means of a fully resilient architecture.

The DELPHYS XL can deliver many more benefits than standard monolithic systems, packing 1000/1200 kW into an overall space-saving design, which can be integrated into your environment simply and flexibly.

- Fault tolerant architecture,
- Easy and safe maintenance,
- TCO optimization (best in class efficiency levels),
- Optimized footprint,
- Fast deployment time / Flexible installation.

Delphys XL can sustain these values thanks to its unique architecture and design:

Hub cabinet for the UPS Unit:

- All input(s) outputs and battery connections to the UPS units,
- 1 MW or 1.2 MW centralized static switch on bypass line,
- Local users interface (HMI),
- Remote communications interfaces.

Power bricks rated for 1000 or 1200 kW/kVA continuous operation:

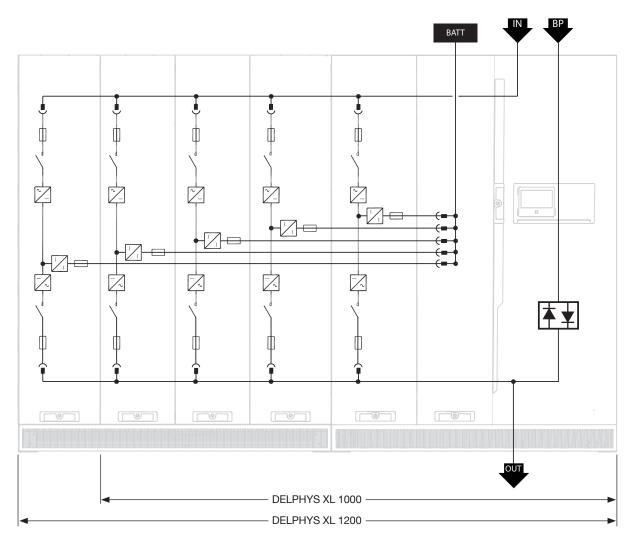
- Single and full rated Rectifier, Inverter and Battery charger per power brick,
- Highly efficient & reliable power bricks,
- Selective disconnection to allow electrical isolation of brick when required.

The development and production sites are certified according to ISO 14001 (Environmental management system) and ISO 9001 (Quality management system).

1.2 RATED POWER

RATED POWER PER UPS UNIT							
UPS power rating	power rating 1000 kVA 1200 kVA						
Power (kW)	1000 kW (30°C)	1200 kW (35°C)					
Parallel units	up to 4 units in parallel						

1.3 SYSTEM ARCHITECTURE

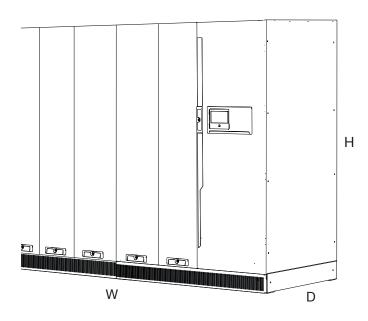

DELPHYS XL is a highly reliable UPS solution based on our field-proven high power XL platform, integrated into a fully redundant architecture that guaranties service continuity for the most critical applications.

The system is composed of several autonomous Power Bricks with advanced selective disconnection and a robust static bypass; Complete mechanical and electrical segregation between the power converters avoids any default propagation inside the system to give the best possible availability.

All the Power conversion bricks and the static switch operate intelligently on a peer-to-peer basis providing a resilient solution with no single point of failure.

Any potential fault is isolated inside the affected sub-assemblies, keeping the critical load protected in double conversion mode by means of the remaining power converters.

Therefore, DELPHYS XL is a fault tolerant UPS system assuming a complete redundancy up to 75% (Delphys XL 1000) and 80% (Delphys XL 1200) of load rate. This intrinsic redundancy reinforces inherent reliability and eliminates all single points of failure associated with traditional UPS to maximize the Mean Time Between Critical Failure.



The above schematic shows an example of Delphys XL with separated inputs (Rectifier / Bypass).

1.4 FOOTPRINT

Delivering far greater benefits than standard monolithic systems, DELPHYS XL packs 1000/1200 kW into an overall space-saving design which can be integrated into your existing architecture simply and flexibly.

			DIMENSIONS (INSTALLATION)					
			Unit	Hub cabinet	Bricks cabinet	Brick		
Width [W]	Delphys XL 1000	(mm)	2625	1405	1220	378		
vvidti i [vv]	Delphys XL 1200	(mm)	3003	1405	1605	576		
	Delphys XL 1000	(mm)	1000	1000	1000	949		
Depth [D] ⁽¹⁾	Delphys XL 1200	(mm)	1000	1000	1000	949		
	Delphys XL 1000	(mm)	2005	2005	2005	1731		
Height [H]	Delphys XL 1200	(mm)	2005	2005	2005	1731		
Moight	Delphys XL 1000	(1/10)	2600	767 + 1 x 363	366 + 3 x 363	363		
Weight	Delphys XL 1200	(kg)	3200	937 + 1 x 363	448 + 4 x 363	303		
Single unit clearances			No rear or lateral clearance, Top = 400 mm					
Access for m	aintenance and oper	ation	Front	Front only (\geq 1200 mm free space for brick extraction)				
Installation Back to back installation / Against a wall								

(1) Depth not including door handles (+30 mm).

2. STANDARD AND OPTIONAL EQUIPMENT

2.1 FLEXIBLE UPS UNIT ARCHITECTURE

- Common or Separated rectifier and bypass mains
- Top and Bottom cable entry or Bus bar flanges
- Up to 10 strings DC connection capability without extra coupling cabinet
- Compatible with different energy storage technologies (e.g. VLRA, Li-Ion, Ni-Cd...)

2.2 STANDARD FEATURES

- Intrinsic redundancy with selective fault disconnection
- Redundant cooling
- Full system heat run tests
- External breakers position management
- Energy Saver mode

2.3 ELECTRICAL OPTIONS

- Input, output and maintenance bypass switches
- PEN kit for TN-C grounding system
- Reinforced battery charger
- battery protection tripping kit
- Smart conversion Mode
- BCR (Battery Capacity Re-injection)

- Backfeed protection: detection circuit
- Battery temperature sensor
- Rails for power brick extraction
- Trolley for power brick cold swap
- ACS synchronization system
- Cold start
- Maintenance Station with spare Power conversion brick
- Advanced GenSet management

2.4 STANDARD COMMUNICATION FEATURES

- User-friendly 7' touch-screen with multilingual color graphic display (Hub cabinet).
- 4 Com-Slots for communication options.
- USB port to download UPS report and log file.
- Ethernet port for service purpose.

2.5 COMMUNICATION OPTIONS

- Dry-contact interface (configurable voltage-free contacts).
- MODBUS RTU RS485 or TCP
- BACnet/IP interface.
- NET VISION: professional WEB/SNMP Ethernet interface for secure UPS monitoring and remote automatic shutdown.
- NET VISION EMD: Environment Temperature and Humidity sensor with 2 inputs
- Remote View Pro supervision software.
- IoT Gateway for Socomec cloud services and SoLive mobile app.
- Remote touch-screen panel.

2.6 REMOTE MONITORING AND CLOUD SERVICES*

- SoLive: Real-time cloud monitoring app to supervise any Socomec UPS via smartphone
- SoLink: 24/7 cloud remote surveillance service by manufacturer specialists for any Socomec UPS
- Remote operations: on-demand remote connection by Socomec experts to perform diagnosis and troubleshooting directly on UPS
- * Please check the service availability in your Country.

3. SPECIFICATIONS

3.1 INSTALLATION PARAMETERS

SYSTEM INSTALLATION							
Unit Rated power (kVA)	1000	1200					
Active power	(kW)	1000	1200				
Rated rectifier input current @ 400V	(A)	1510	1812				
Maximum rectifier input current	(A)	1560	1950				
Rated bypass input current @ 400V	(A)	1443	1732				
Rated output current @ 400 V	(A)	1443	1732				
Maximum air flow	(m³/h)	8000	10000				
	(kW)	46	55				
Power dissipation in nominal conditions ⁽¹⁾	(kcal/h) x1000	39.6	47				
	BTU/h x1000	157	188				
	(kW)	50.5	62.5				
Power dissipation (max) under the worst conditions ⁽²⁾	(kcal/h) x1000	43.4	53.7				
	BTU/h x1000	172	213				

3.2 ELECTRICAL CHARACTERISTICS

ELECTRICAL CHARACTERISTICS - RECTIFIER INPUT ⁽³⁾						
Rated mains supply vol	tage	380/400/415 V 3ph				
Voltage tolerance		200 V to 480 V ⁽⁴⁾				
Rated frequency		50/60 Hz				
Frequency tolerance		45 to 65 Hz				
Power factor		> 0.99 ⁽⁵⁾				
Total harmonic distortion	n (THDi)	< 2.5% ⁽⁵⁾				
Max inrush current at st	art-up	< In (no overcurrent)				
Conact compatibility	Soft start (Power walk-in)	Configurable from 5A/sec to immediate (no ramp)				
Genset compatibility	Advanced Genset Management	Smart power sharing between GenSet/battery upon load steps				

ELECTRICAL CHARACTERISTICS - BAT	TERY	1000	1200			
Battery Type		VRLA – Lithiur	m Ion - Ni-Cd			
Number of poles		2 wire				
Lithium Ion communication with UPS		Basic (dry contact) / Smart (Modbus)				
Number of VRLA battery cells with load PF=	ry cells with load PF=1 ⁽⁶⁾ 258 to 300 252 to 30			nber of VRLA battery cells with load PF=1 ⁽⁶⁾		252 to 300
Number of VRLA battery cells with load PF	≤ 0.9	246 to 300	228 to 300			
Voltage range for LIB batteries		Up to	705V			
Battery AC ripple current	attery AC ripple current		city (at C10 discharge)			
Battery AC ripple voltage		< 1% on the battery block				
Maximum recharge current	standard	160 A	200 A			
	optional	480 A	600 A			

ELECTRICAL CHARACTERISTICS - STA	TIC BYPASS	1000	1200		
Bypass rated voltage		380/400/415 V 3ph			
Bypass voltage tolerance		±15% (ad	djustable)		
Bypass rated frequency		50/60 Hz (selectable)			
Bypass frequency tolerance		$\pm 2\%$ (from $\pm 1\%$ to $\pm 5\%$ (operation with generator unit))			
Bypass frequency variation speed follow up	D	1 Hz/s adjustable	from 1 to 3 Hz/s		
Semiconductors characteristics	I²t (A²s)	Up to 5,615,000	Up to 10,400,000		
Semiconductors characteristics	ls/c (A peak)	Up to 33,500	Up to 45,500		
	Permanent	110% of the rated	d apparent power		
Overload tolerated on the bypass	10 min	125% of the rated apparent power			
	1 min	150% of the rated	d apparent power		
Short-circuit withstanding (Icw)	kA	65 / 100	(optional)		

ELECTRICAL CHARACTERISTICS - INVE	CHARACTERISTICS - INVERTER 1000 1200				
Rated output voltage (selectable)		380/400/4	415 V 3ph		
Output voltage tolerance		static load <1%, dynamic l	oad VFI-SS-111 compliant		
Rated output frequency		50/60 Hz (selectable)			
Autonomous frequency tolerance		±0.01 Hz on mains power failure			
Harmonic voltage distortion		ThdU ≤ 1 % with	rated linear load		
	1 h	1100 kW	1320 kW		
Overload tolerated by the inverter ⁽⁷⁾	10 min	1250 kW	1500 kW		
	1 min	1440 kW	1800 kW		

ENVIRONMENT CHARACTERISTICS					
UPS Storage conditions	-20 to +70 °C under ≤70% condensation free RH				
UPS Start-up and working conditions	0 to +50 °C under ≤95% condensation free RH				
Air inlet	Front				
Air outlet	Тор				
Efficiency in double conversion (VFI)	up to 97%				
Efficiency in Smart conversion mode	up to 99%				
Acoustic noise	< 83 dBA				
Maximum altitude without derating	1000 m (3,300 ft)				
Degree of protection	IP 20 (IP30 top grids)				
Color	RAL 7016				

(1) Nominal input current and rated output active power (PF1).

(2) Dissipation that may be generated temporarily, considering: Low input voltage, battery recharge and rated output active power (PF1).(3) IGBT rectifier.

(4) Conditions apply.

(5) At full load and rated input voltage (THDV < 1%).

(6) Batteries configurations should be selected according to the back up time and the UPS ambient temperature - please consult us for validation

(7) The tolerated output overload corresponds to the inverter capability under defined conditions. The output overload performance is incremented by the static bypass capability (when available).

3.3 RECOMMENDED PROTECTION DEVICES

3.3.1 Inputs protections for single unit configuration

RECOMMENDED PROTECTION DEVICES	1000	1200
Unit Rated power (kVA)	1000	1200
Rectifier input ⁽⁶⁾ (A)	1600	2000
Bypass input main ⁽⁸⁾ (A)	1600	2000

3.3.2 Output protections

RECOMMENDED PROTECTION DE		1000	1200
Unit Rated power (kVA)		1000	1200
Inverter short-circuit current ⁽¹⁰⁾ (A)	0 to 20 ms	3230	4100
(when AUX MAINS is not present)	20 to 100 ms	2390	3250
Output protection rating (A)	Output protection rating (A)		≤ 250

3.3.3 Connecting cables

CABLES CONNECTION – HUB CABINET (11)							
	Maximum number	Maximum number of cables according to size (Others on demand)					
Rectifier terminals 3PH ⁽¹²⁾	6 x 240 mm ² per pole 5 x 300 mm ² per pole 4 x 400 mm ² per pol						
Bypass terminals 3PH+N ⁽¹³⁾	6 x 240 mm² per pole	5 x 300 mm² per pole	4 x 400 mm² per pole				
Output terminals 3PH+N ⁽¹³⁾	6 x 240 mm² per pole	5 x 300 mm² per pole	4 x 400 mm² per pole				
Battery terminals	up	up to 10 x 240mm² per pole (+/-)					

(8) Applicable by respecting the installation rules regarding cable lengths. The bypass protection is given as a recommendation (trip curves setting and distribution sizing shall be defined according to the rated load current and the UPS overload capability).

(9) Selectivity of distribution after the UPS with inverter short-circuit current (short-circuit with AUX MAINS not present). This must be selective with residual current circuit breakers connected downstream of the UPS.

(10) Average Peak Current

(11) Based on 90° HO7 RNF or R2V cable type; for other please consult us

(12) Neutral is not required at the rectifier input. If distributed, however, consult us to ensure it is allowed by installation standards.

(13) On demand, the Unit can supply a 3 wires distribution (without input and output neutral)

4. REFERENCE STANDARDS AND DIRECTIVES

4.1 OVERVIEW

The equipment installed, used and serviced in accordance with its intended use, its regulations and standards, its manufacturer instructions and rules, complies with the relevant Union harmonization legislation:

LVD 2014 / 35 / EU

DIRECTIVE 2014/35/EU OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of 26 February 2014, on the harmonization of the laws of the Member States relating to electrical equipment designed for use within certain voltage limits being made available on the market.

EMC 2014 / 30 / EU

DIRECTIVE 2014/30/EU OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of 26 February 2014, on the harmonization of the laws of the Member States relating to electromagnetic compatibility.

RoHS 2011/65/EU

Directive 2011/65 of the European parliament and of the council of 8 June 2011 on the restriction of the use of certain hazardous substances in electrical and electronic equipment

4.2 STANDARDS

4.2.1 Safety

EN 62040-1 Uninterruptible Power System (UPS) - Part 1: General and safety requirements IEC 62040-1 Uninterruptible Power System (UPS) - Part 1: Safety requirements

4.2.2 Electromagnetic compatibility

EN 62040-2 Uninterruptible Power System (UPS) - Part 2: Electromagnetic compatibility (EMC) requirements IEC 62040-2 Uninterruptible Power System (UPS) - Part 2: Electromagnetic compatibility (EMC) requirements

4.2.3 Test and performance

EN 62040-3 Uninterruptible Power System (UPS) - Part 3: Method of specifying the performance and test requirements

4.2.4 Environmental

IEC 62040-4 Uninterruptible Power System (UPS) - Part 4: Environmental aspects - Requirements and reporting

4.3 SYSTEM AND INSTALLATION GUIDELINES

When carrying out electrical installation, all the above standards must be observed. All national and international standards (e.g IEC60364) applicable to the specific electrical installation including batteries must be observed.

ELITE UPS: a mark of efficiency

Socomec, as CEMEP UPS manufacturer member, has signed a Code of Conduct put forward by the Joint Research Centre of the European Commission (JRC), to ensure the protection of critical applications and processes ensuring 24/7 continuous high quality supply. The JRC commits to mitigating energy losses and gas emissions caused by UPS equipment, therefore maximising UPS efficiency.

MODULYS XS From 2.5 to 20 kVA

Socomec Resource Center To download, brochures, catalogues and technical manuals

OBJECTIVES

The aim of these specifications is to provide:

- The information required to choose the right uninterruptible power supply for a specific application.
- The information required to prepare the system and installation site.

The specifications are intended for:

- Installation engineers.
- Design engineers.
- Engineering consultants.

INSTALLATION REQUIREMENTS AND PROTECTION

Connection to the mains power supply and to the load(s) must be made using cables of suitable size, in accordance with current standards. If not already present, an electrical distribution panel which can isolate the network upstream of the UPS must be installed. This electrical distribution panel must be equipped with a protection device (or two, if there is a separate bypass line) of an appropriate rating for the power drawn at full load.

For detailed information, see the installation and operating manual.

1. ARCHITECTURE

1.1 RANGE

MODULYS XS is a full range of high performing UPS system designed to:

- ensure 24/7/365 availability and business continuity for mission critical applications
- avoid data losses and downtime of company operations,
- reduce the electrical infrastructure's total cost of ownership,
- adopt a sustainable development approach.

MODULYS XS								
Module power		2.5 (kVA/kW) 5.0 (kVA/kW)						
Phase in / phase out		1.	/1		1/1 and 3/1			
Number of power modules	1	2	3	4	1	2	3	4
System Rated power (kVA/kW)	2.5	5	7.5	10	5	10	15	20
MC6	•	•	•	•	•	•	•	•
MC9	•	•	•	•	•	•	•	•
RM3	•	•	•		•	•	•	
RM4	•	•	•	•	•	•	•	•
TC3	•	•	•		•	•	•	
Matrix table for model and kVA powe	er rating							

MODULYS XS has been specifically designed to meet the demands of loads in specific application contexts, in order to optimise the features of the product and facilitate its integration within the system.

2. FLEXIBILITY

2.1 POWER RATINGS FROM 2.5 TO 20 kVA/kW

The equipment has been designed with a minimum direct and indirect footprint (the actual space occupied by the unit and the space required around it for maintenance, ventilation and access to the operating mechanisms and communication devices).

The detailed design also provides easy access for maintenance and installation.

The air inlet is on the front, with outflow from the rear side; this means other equipment or external battery enclosures can be placed alongside the UPS unit.

MODULYS XS MC	;				
	Dimensions	Width [mm]	Depth [mm]	Height [mm]	weight (kg)
MC6		550	635	1060	90
MC9		550	635	1460	120
MODULYS XS RM					
RM3		449 (19")	570	575	44
RM4		449 (19")	570	570 708	

	Dimensions	Width [mm]	Depth [mm]	Height [mm]	weight (kg)	
MODULYS XS TC	3					(NA
TC3		600	600	1400	140	MODULYS XS From 2.5 to 20 kVA

ADDITIONAL MODULE

MODULYS XS PO	MODULYS XS POWER MODULE							
2.5 kW Power Module		446	475	131	14			
5 kW Module		446	475	131	18			
MODULYS XS BA	MODULYS XS BATTERY MODULE							
Battery Module		446	475	131	10			
Battery Pack long life		100	330	115	9			
Battery Pack normal life		100	330	115	9			
Battery for TC3 100 Ah		Mounted inside the TC3 cabinet						

2.2 FLEXIBLE BACK-UP TIME

Different extended back-up times are possible by using battery modules with a enhanced battery charger. Selection of the back-up time is flexible thanks to the wide range of battery packs.

2.2.1 MODULYS XS (MC systems)

Back up time in minutes @ typical load

SYSTEM POW	/ER (KVA/KW)	2.5	5	7.5	10		5	10	15	20
MODULE RA	TED POWER	2	2.5 (k\	/A/kW	7)			5 (kV	A/kW)	
	2	8	C.	onsult						
	3	14		onsuit	us					
	4	21	8				8			
	5	27	11				12		onoult	
	6	35	14	8		7	14		onsuit	us
	7	42	17	10		MC-6/MC-9	17			
	8	49	21	12	8	l l	21	8]	
	9	57	24	14	10	5/1	24	10	1	
	10	65	27	16	11	M	28	12	1	
	11	73	31	18	13	9	31	13	1	
	12	81	35	21	14	9	35	14	8	
	13	90	38	23	16		38	16	9	
	14	98	42	25	17		42	17	10	
	15	105	46	27	19		46	19	10 12 12	
	16	114	49	30	21		49	21	12	8
Detten (peak	17	123	52	32	23		53	23	13	9
Battery pack number	18	132	57	35	24		57	24	14	10
number	19	140	61	37	25		61	26	16	11
	20	148	65	39	27		66	28	17	12
	21	157	69	42	29		69	29	17	
	22	167	73	44	31		73	31	8 10 12 13 14 8 16 9 17 10 19 12 21 12 23 13 24 14 26 16 28 17 29 17	
	23	176	76	47	33		77	33		
	24	185	81	49	35		81	35	21	
	25	194	86	51	36	MC-9	86	36		
	26	202	90	54	38	Y Y	90	38	1	
	27	209	94	57	40	9	94	40	1	
	28	220	98	60	42		98	42	1	
	29	229	101	63			102		,	
	30	238	105	65			105	_	0	
	31	248	109				109	C	onsuit	us
	32	256	114				114			
	33	264	~					L		
	34	272	C	onsult	us					

Typical load = 70% Pn

2.2.2 MODULYS XS (RM systems)

Back up time in minutes @ typical load

SYSTEM POW	/ER (KVA/KW)	2.5	5	7.5	10		5	10	15	20
MODULE RATED POWER 2.5 (kVA/kW)					7)			5 (kV	A/kW)	
	2	8				-				
	3	14		_		Ĩ				
	4	21	8	Conc	ultue	L L	8			
	5	27	11	Cons	Consult us	3/1	12			
	6	35	14	8		R	14			
Dettersurger	7	42	17	10		RM-3/RM-4	17			
Battery pack number	8	49	21	12	8	4	21	8	Cons	ult us
number	9	57	24	14			24			
	10	65	27	16			28			
	11	73	31	Conc	ult us	RM-4	31			
	12	81	35	Cons	uitus		35			
	13	90								
	14	98								

Typical load = 70% Pn

2.2.3 MODULYS XS (TC System)

Back up time in minutes @ typical load

SYSTEM PO	WER	2.5	5	7.5	5	10	15
MODULE RA (KVA/KW)	TED POWER	2.5	(kVA/	kW)	5 (kVA/k	W)
Battery	100 Ah	118	50	28	50	19	10
Capacity	200 Ah	271	118	72	118	50	28

Typical load = 70% Pn

3. STANDARD FEATURES AND OPTIONS

Availability

O Available as option (installation on site)

STD Standard feature

	MC	RM	тс	Notes
Communication Option				
ADC+SL card (Advanced Dry Contact + Serial Link)	0	0	0	
External temperature sensor	0	0	0	ADC+SL card
Remote touchscreen display	0	0	0	ADC+SL card
BACnet/IP interface card	0	0	0	
Modbus TCP interface card	0	0	0	
Net Vision card (professional WEB/SNMP interface for UPS monitoring)	0	0	0	
EMD				
(Environmental Monitoring Device: tempera- ture, humidity, 2 dry contacts)	0	0	0	Net Vision card
Electrical Option				
Dual Input	STD	STD	STD	
Tropicalization	STD	STD	STD	
External maintenance bypass	0	0	0	

Required option

4. SPECIFICATIONS MC6 / MC9

4.1 INSTALLATION PARAMETERS

INSTALLATION PAP	RAMENTERS					•		•		
System Rated power (kV	System Rated power (kVA/kW)				7.5	10	5	10	15	20
Module Rated power (kV	/A/kW)			2	.5			Į	ō	
Number of Modules			1	2	3	4	1	2	3	4
Phase in/out				1.	/1			1/1 c	or 3/1	
Active power		kW	2.5	5	7.5	10	5	10	15	20
Rated/maximum rectifier (EN 62040-3)	input current	А	12/15	24/30	36/44	47/59	24/30	47/59	71/87	95/118
Rated bypass input curre	ent (1)	А	11	22	33	44	22	44	65	87
Inverter output current @ 230 V Pn		А	11	22	33	44	22	44	65	87
Recommended air flow o	m³/h	160	320	480	640	240	480	720	960	
Acoustic noise @ 70% Pn		dBA	43	46	49	52	45	48	51	54
		W	220	440	660	880	420	840	1260	1680
Power dissipation in nomi	nal conditions (2)	kcal/h	189	378	567	757	361	722	1083	1445
		BTU/h	751	1501	2252	3003	1433	2866	4299	5732
		W	250	500	750	1000	480	960	1440	1920
Power dissipation (max) conditions ⁽³⁾	in the worst	kcal/h	215	430	645	860	413	825	1238	1651
		BTU/h	853	1706	2559	3412	1638	3276	4913	6551
	Width	mm				55	50			
Dimensions MC6/MC9	Depth	mm				63	35			
	Height	mm				1060 /	/ 1460			
Cingle unit Classenase	Operational	mm				Rear 300	0 lateral 0			
Single unit Clearances	Maintenance	mm				Front 100	0 top 800			
Weight MC6/MC9		kg				90 /	120			

1. Considering nominal bypass current calculated @ 230 V, considering a continuos overload of 110%.

2. Considering nominal input current (230 V, battery charged) and rated output active power.

3. Considering maximum input current (low input voltage, battery charged) and rated output active power.

4.2 ELECTRICAL CHARACTERISTICS

ELECTRICAL CHARACTERISTICS - RECTIFIER INPUT										
System Rated power (kVA/kW)	2.5	5	7.5	10	5	10	15	20		
Module Rated power (kVA/kW)			2	.5			ļ	5		
Number of Modules		1	2	3	4	1	2	3	4	
Rated mains supply voltage	V	230 1ph + N 400 3ph + N								
Voltage tolerance	V		184 to 27	76 (±20%)		184 to 276 (±20%) 320 to 480 (±20%)				
Voltage tolerance at derated load	V	a	up to 70% of r	o 150 Iominal Ioa	ad	up to 150 1ph + N up to 260 3ph + N @ 70% of nominal load				
Rated frequency	Hz				50,	/60				
Frequency tolerance					±1	0%				
Current Total harmonic distortion (THDi)		≤ 6%					≤ 5.4%			
Power factor (at full load and rated voltage)		≥ 0.98								
Max inrush current at start-up		<in< td=""><td></td></in<>								

System Rated power (kVA/kW)	2.5	5	7.5	10	5	10	15	20
Module Rated power (kVA/kW)		2	.5			ł	5	
Number of Modules	1	2	3	4	1	2	3	4

ELECTRICAL CHARACTERISTICS - BYPASS									
Bypass frequency variation speed	Hz/s		1 Hz/s						
Bypass rated voltage			Nominal output voltage ±15%						
Bypass rated frequency	Hz	50/60 Hz (selectable)							
Bypass frequency tolerance		±2% (±8% with genset)							
	5 min	13	25	38	51	25	51	77	100
Bypass current overload (A)	1 min	15	30	44	59	30	59	88	117
	20 sec	19	39	59	79	39	79	117	156

ELECTRICAL CHARACTERISTICS - INVERTER									
Rated output voltage	V		208 ⁽¹⁾ /220/230/240 (selectable)						
Output voltage tolerance			Static: ±3% VFI-SS (EN 62040-3 compliant)						
Rated output frequency	Hz		50/60 Hz (selectable)						
Output frequency tolerance		$\pm 0.1\%$ on mains power failure							
Load crest factor		≥ 2.3							
Voltage total harmonic distortion THDV		< 3.5% with linear load							
Invertex everleed (1400 in permet mode	5 min	2.75	5.5	8.25	11	5.5	11	16.5	22
Inverter overload (kW) in normal mode	10 sec	3.25	6.5	9.75	13	6.5	13	19.5	26
Short-circuit inverter current (A) (when AUX MAINS is not present)	0 to 60 ms	25	50	75	100	50	100	150	200

ELECTRICAL CHARACTERISTICS - EFFICIENCY						
Double conversion efficiency	up to 92.8%					
EcoMode efficiency	99%					

ELECTRICAL CHARACTERISTICS - ENVIRONMENT							
Storage temperatures	°C	-5 to +50 (15 to 25 for better battery life)					
Working temperature	°C	0 to +40 (15 to 25 for better battery life)					
Maximum relative humidity (non-condensing)		95%					
Maximum altitude without derating	m (ft)	1000 (3300)					
Degree of protection		IP20					
Colour		RAL 7016					

ELECTRICAL CHARACTERISTICS - BATTERY						
Standard max. recharge current	А	2.4 per Battery Module				

1. Up to 90% Pn

4.3 RECOMMENDED PROTECTIONS

System Rated power (kVA/kW)		2.5	5	7.5	10	5	10	15	20		
Module Rated power (kVA/kW)			2	.5				5			
Number of Modules		1	2	3	4	1	2	3	4		
RECOMMENDED PROTECTION DE	EVICES - I	RECTIF	IER ⁽¹⁾								
C curve circuit breaker (1ph/3ph)	А	16	32	50	63	32/13	63/26	100/32	125/50		
gG fuse (1ph/3ph)	А	16	32	50	63	32/12	63/25	100/32	125/50		
RECOMMENDED PROTECTION DEVICES - GENERAL BYPASS ⁽²⁾											
Conditional short circuit current rating (lcc)	kA	10				10					
C curve circuit breaker	А	16	32	40	63	32	63	100	125		
gG fuse	А	16	32	40	63	32	63	100	125		
RECOMMENDED PROTECTION DE	EVICES - I	NPUT F	RESIDU	AL CUR		IRCUIT	(RCD)	BREAK	ER ⁽³⁾		
Input residual current circuit breaker	А			0.	1 A Seleo	ctive type	В				
RECOMMENDED PROTECTION DE	EVICES - (OUTPU	(4)								
C curve circuit breaker (3)	А	2	4	6	8	4	8	13	16		

CABLES - MAXIMUM CABLE SECT	ION ⁽⁵⁾	
Rectifier terminals	mm	50
Bypass terminals	mm	50
Battery terminals (5)	mm	2x 95
Output terminals	mm	50

8

12

16

4

8

16

25

32

А

1. Rectifier protection should only be considered in the event of separate inputs. Recommended values to avoid unwanted tripping with UPS at full power. When the bypass and rectifier inputs are combined (common input), the general input protection rating must be the highest of the two (bypass or rectifier).

2. Recommended values to avoid unwanted tripping with UPS at full power. When the bypass and rectifier inputs are combined (common input), the general input protection rating must be the highest of the two (bypass or rectifier).

3. RCD is not necessary when the UPS is installed in a TN-S system. RCD is not permitted on TN-C systems. If an RCD is required a B-type should be used. Must be coordinate with residual current circuit breakers downstream of the UPS connected to the UPS output.

4. Protection tripping downstream of the UPS with inverter short circuit current (Worst case = AUX MAINS not present). In the Normal case, with AUX MAINS present, fault clearing is determined by the Mains short-circuit capability.

5. Use cable with tin-plated eyelets for the connection

B curve circuit breaker (3)

5. SPECIFICATIONS RM3 / RM4

5.1 INSTALLATION PARAMETERS

INSTALLATION PAP	RAMENTERS									
RM3 System Rated pow	er (kVA/kW)		2.5	5	7.5		5	10	15	
RM4 System Rated pow	er (kVA/kW)		2.5	5	7.5	10	5	10	15	20
Module Rated power (kV	/A/kW)			2	.5			Ę	ō	
Number of Modules			1	2	3	4	1	2	3	4
Phase in/out			1,	/1			1/1 c	or 3/1		
Active power	bower kW		2.5	5	7.5	10	5	10	15	20
Rated/maximum rectifier (EN 62040-3)	input current	А	12/15	24/30	36/44	47/59	24/30	47/59	71/87	95/118
Rated bypass input curre	ent (1)	А	11	22	33	44	22	44	65	87
Inverter output current @	nverter output current @ 230 V Pn		11	22	33	44	22	44	65	87
Recommended air flow o	capacity	m³/h	160	320	480	640	240	480	720	960
Acoustic noise @ 70% P	n	dBA	43	46	49	52	45	48	51	54
		W	220	440	660	880	420	840	1260	1680
Power dissipation in nomi	nal conditions (2)	kcal/h	189	378	567	757	361	722	1083	1445
		BTU/h	751	1501	2252	3003	1433	2866	4299	5732
		W	250	500	750	1000	480	960	1440	1920
Power dissipation (max) conditions ⁽³⁾	in the worst	kcal/h	215	430	645	860	413	825	1238	1651
		BTU/h	853	1706	2559	3412	1638	3276	4913	6551
	Width	mm				44	19			
Dimensions RM3/RM4	Depth	mm	449 570							
	Height	mm				575 /	708			
Weight		kg				44 ,	′ 50			

1. Considering nominal bypass current calculated @ 230 V, considering a continuos overload of 110%.

2. Considering nominal input current (230 V, battery charged) and rated output active power.

3. Considering maximum input current (low input voltage, battery charged) and rated output active power.

5.2 ELECTRICAL CHARACTERISTICS

ELECTRICAL CHARACTERISTICS	- REC	TIFIER	INPUT								
RM3 System Rated power (kVA/kW)		2.5	5	7.5		5	10	15			
RM4 System Rated power (kVA/kW)		2.5	5	7.5	10	5	10	15	20		
Module Rated power (kVA/kW)			2	.5			ł	5			
Number of Modules		1	2	3	4	1	2	3	4		
Rated mains supply voltage	V	230 1ph + N 230 1ph 400 3ph									
Voltage tolerance	V		184 to 27	76 (±20%)		184 to 276 (±20%) 320 to 480 (±20%)					
Voltage tolerance at derated load	V	a		o 150 nominal loa	ad	up to 150 1ph + N up to 260 3ph + N @ 70% of nominal load					
Rated frequency	Hz				50,	/60					
Frequency tolerance					±1	0%					
Current Total harmonic distortion (THDi)			≤	6%			≤ 5	.4%			
Power factor (at full load and rated voltage)		≥ 0.98									
Max inrush current at start-up					<	In					

RM3 System Rated power (kVA/kW)	2.5	5	7.5		5	10	15		
RM4 System Rated power (kVA/kW)	2.5	5	7.5	10	5	10	15	20	
Module Rated power (kVA/kW)		2	.5		5				
Number of Modules	1	2	3	4	1	2	3	4	

ELECTRICAL CHARACTERISTICS	- BYPASS	5									
Bypass frequency variation speed	Hz/s		1 Hz/s								
Bypass rated voltage			Nominal output voltage ±15%								
Bypass rated frequency	Hz	50/60 Hz (selectable)									
Bypass frequency tolerance		±2% (±8% with genset)									
	5 min	13	25	38	51	25	51	77	100		
Bypass current overload (A)	1 min	15	30	44	59	30	59	88	117		
	20 sec	19	39	59	79	39	79	117	156		

ELECTRICAL CHARACTERISTICS -INVERTER											
Rated output voltage	V			208(1)/	220/230/	240 (sele	ctable)				
Output voltage tolerance				VFI-SS		: ±3%)40-3 cor	npliant)				
Rated output frequency	Hz		50/60 Hz (selectable)								
Output frequency tolerance		$\pm 0.1\%$ on mains power failure									
Load crest factor		≥ 2.3									
Voltage total harmonic distortion THDV				<	3.5% witl	n linear lo	ad				
	5 min	2.75	5.5	8.25	11	5.5	11	16.5	22		
Inverter overload (kW)	10 sec	3.25	6.5	9.75	13	6.5	13	19.5	26		
Short-circuit inverter current (A) (when AUX MAINS is not present)	0 to 60 ms	25	50	75	100	50	100	150	200		

ELECTRICAL CHARACTERISTICS	FICIENCY	
Double conversion efficiency		up to 92.8%
EcoMode efficiency		99%

ELECTRICAL CHARACTERISTICS	- ENVIRO	NMENT
Storage temperatures	°C	-5 to +50 (15 to 25 for better battery life)
Working temperature	°C	0 to +40(15 to 25 for better battery life)
Maximum relative humidity (non-condensing)		95%
Maximum altitude without derating	m (ft)	1000 (3300)
Degree of protection		IP20
Colour		RAL 7016

ELECTRICAL CHARACTERISTICS - BATTERY									
Standard max. recharge current	А	2.4 per Battery Module							

1. Up to 90% Pn

5.3 RECOMMENDED PROTECTIONS

RM3 System Rated power (kVA/kW)	2.5	5	7.5		5	10	15	
RM4 System Rated power (kVA/kW)	2.5	5	7.5	10	5	10	15	20
Module Rated power (kVA/kW)		2	.5		5			
Number of Modules	1	2	3	4	1	2	3	4

RECOMMENDED PROTECTION DEVICES - RECTIFIER (1)											
C curve circuit breaker (1ph/3ph)	А	16	32	50	63	32/13	63/26	100/32	125/50		
gG fuse (1ph/3ph)	А	16	32	50	63	32/12	63/25	100/32	125/50		

RECOMMENDED PROTECTION DEVICES - GENERAL BYPASS ⁽²⁾									
Conditional short circuit current rating (lcc)	kA		1	0			1	0	
C curve circuit breaker	А	16	32	40	63	32	63	100	125
gG fuse	А	16	32	40	63	32	63	100	125

RECOMMENDED PROTECTION DE	EVICES - I	NPUT RESIDUAL CURRENT CIRCUIT (RCD) BREAKER ⁽³⁾
Input residual current circuit breaker	А	0.1 A Selective type B

RECOMMENDED PROTECTION DE	EVICES - (OUTPU	(4)						
C curve circuit breaker (3)	А	2	4	6	8	4	8	13	16
B curve circuit breaker (3)	А	4	8	12	16	8	16	25	32

CABLES - MAXIMUM CABLE SECTION (5)						
Rectifier terminals	mm	50				
Bypass terminals	mm	50				
Battery terminals (5)	mm	2x 95				
Output terminals	mm	50				

1. Rectifier protection should only be considered in the event of separate inputs. Recommended values to avoid unwanted tripping with UPS at full power. When the bypass and rectifier inputs are combined (common input), the general input protection rating must be the highest of the two (bypass or rectifier).

2. Recommended values to avoid unwanted tripping with UPS at full power. When the bypass and rectifier inputs are combined (common input), the general input protection rating must be the highest of the two (bypass or rectifier).

3. RCD is not necessary when the UPS is installed in a TN-S system. RCD is not permitted on TN-C systems. If an RCD is required a B-type should be used. Must be coordinate with residual current circuit breakers downstream of the UPS connected to the UPS output.

4. Protection tripping downstream of the UPS with inverter short circuit current (Worst case = AUX MAINS not present). In the Normal case, with AUX MAINS present, fault clearing is determined by the Mains short-circuit capability.

5. Use cable with tin-plated eyelets for the connection

6. SPECIFICATIONS TC3

6.1 INSTALLATION PARAMETERS

INSTALLATION PAI	RAMENTERS								
System Rated power (k	/A/kW)		2.5	5	7.5	5	10	15	
Module Rated power (k)	/A/kW)			2.5			5		
Number of Modules			1	2	3	1	2	3	
Phase in/out				1/1			1/1 or 3/1		
Active power		kW	2.5	5	7.5	5	10	15	
Rated/maximum rectifier (EN 62040-3)	r input current	А	12/15	24/30	36/44	24/30	47/59	71/87	
Rated bypass input curr	ent (1)	А	11	22	33	22	44	65	
Inverter output current @	230 V Pn	А	11	22	33	22	44	65	
Recommended air flow capacity		m³/h	160	320	480	240	480	720	
Acoustic noise @ 70% Pn		dBA	43	46	49	45	48	51	
		W	220	440	660	420	840	1260	
Power dissipation in nom	inal conditions (2)	kcal/h	189	378	567	361	722	1083	
		BTU/h	751	1501	2252	1433	2866	4299	
		W	250	500	750	480	960	1440	
Power dissipation (max) conditions ⁽³⁾	in the worst	kcal/h	215	430	645	413	825	1238	
		BTU/h	853	1706	2559	1638	3276	4913	
	Width	mm			60	00			
Dimensions	Depth	mm	600						
	Height	mm	1400						
	Operational	mm			Rear 300) lateral 0			
Single unit Clearances	Maintenance	mm	Front 1000 top 800						
Weight		kg			14	10			

1. Considering nominal bypass current calculated @ 230 V, considering a continuos overload of 110%.

2. Considering nominal input current (230 V, battery charged) and rated output active power.

3. Considering maximum input current (low input voltage, battery charged) and rated output active power.

6.2 ELECTRICAL CHARACTERISTICS

ELECTRICAL CHARACTERISTICS	- REC	TIFIER	INPUT				
System Rated power (kVA/kW)		2.5	5	7.5	5	10	15
Module Rated power (kVA/kW)			2.5			5	
Number of Modules		1	2	3	1	2	3
Rated mains supply voltage	V	230 V 1ph + N 400 3ph + N					
Voltage tolerance	V	184 to 276 (±20%) 184 to 276 (±20%) 320 to 480 (±20%) 320 to 480 (±20%)			, ,		
Voltage tolerance at derated load			p to 150 V of nominal load		up to 150 1ph + N up to 260 3ph + N @ 70% of nominal loa		1 + N
Rated frequency	Hz			50,	/60		
Frequency tolerance				±1	0%		
Current Total harmonic distortion (THDi)		≤ 6% ≤ 5.4%					
Power factor (at full load and rated voltage)		≥ 0.98					
Max inrush current at start-up		<in< td=""><td></td></in<>					

System Rated power (kVA/kW)	2.5	5	7.5	5	10	15
Module Rated power (kVA/kW)		2.5			5	
Number of Modules	1	2	3	1	2	3

ELECTRICAL CHARACTERISTICS - BYPASS								
Bypass frequency variation speed	Hz/s		1					
Bypass rated voltage		Nominal output voltage ±15%						
Bypass rated frequency	Hz	50/60 (selectable)						
Bypass frequency tolerance			±2	2% (±8%	with gens	set)		
	5 min	13	25	38	25	51	77	
Bypass current overload (A)	1 min	15	30	44	30	59	88	
	20 sec	19	39	59	39	79	117	

ELECTRICAL CHARACTERISTICS	-INVERTE	R						
Rated output voltage	V		208 ⁽¹⁾ /220/230/240 (selectable)					
Output voltage tolerance		Static: ±3% VFI-SS (EN 62040-3 compliant)						
Rated output frequency	Hz			50/60 (se	electable)			
Output frequency tolerance		±0.1% on mains power failure						
Load crest factor		≥ 2.3						
Voltage total harmonic distortion THDV			<	3.5% with	n linear lo	ad		
	5 min	2.75	5.5	8.25	5.5	11	16.5	
Inverter overload (kW)	10 sec	3.25	6.5	9.75	6.5	13	19.5	
Short-circuit inverter current (A) (when AUX MAINS is not present)	0 to 60 ms	25	50	75	50	100	150	

ELECTRICAL CHARACTERISTICS - EFFICIENCY					
Double conversion efficiency up to 92.8%					
EcoMode efficiency	99%				

ELECTRICAL CHARACTERISTICS - ENVIRONMENT								
Storage temperatures	°C	-5 to +50 (15 to 25 for better battery life)						
Working temperature	°C	0 to +40 (15 to 25 for better battery life)						
Maximum relative humidity (non-condensing)		95%						
Maximum altitude without derating	m (ft)	1000 (3300)						
Degree of protection		IP20						
Colour		RAL 7016						

ELECTRICAL CHARACTERISTICS - BATTERY						
Standard max. recharge current	А	2.4 per Battery Module				

1. Up to 90% Pn

6.3 RECOMMENDED PROTECTIONS

System Rated power (kVA/kW)	2.5	5	7.5	5	10	15	
Module Rated power (kVA/kW)	2.5			5			
Number of Modules	1	2	3	1	2	3	

RECOMMENDED PROTECTION DEVICES - RECTIFIER (1)									
C curve circuit breaker (1ph/3ph)	А	16	32	50	32/13	63/26	100/32		
gG fuse (1ph/3ph)	А	16	32	50	32/12	63/25	100/32		

RECOMMENDED PROTECTION DEVICES - GENERAL BYPASS ⁽²⁾										
Conditional short circuit current rating (lcc)	kA 10 10									
C curve circuit breaker	А	16	32	40	32	63	100			
gG fuse	А	16	32	40	32	63	100			

RECOMMENDED PROTECTION DE BREAKER (3)	RECOMMENDED PROTECTION DEVICES - INPUT RESIDUAL CURRENT CIRCUIT (RCD) BREAKER ⁽³⁾							
	٨							

Input residual current circuit breaker	A	0.1 A Selective type B
DECOMMENDED DOTECTIO		

C curve circuit breaker (3)	А	2	4	6	4	8	13	
B curve circuit breaker (3)	А	4	8	12	8	16	25	

CABLES - MAXIMUM CABLE SECTION (5)									
Rectifier terminals	mm	50							
Bypass terminals	mm	50							
Battery terminals (5)	mm	2x 95							
Output terminals	mm	50							

1. Rectifier protection should only be considered in the event of separate inputs. Recommended values to avoid unwanted tripping with UPS at full power. When the bypass and rectifier inputs are combined (common input), the general input protection rating must be the highest of the two (bypass or rectifier).

2. Recommended values to avoid unwanted tripping with UPS at full power. When the bypass and rectifier inputs are combined (common input), the general input protection rating must be the highest of the two (bypass or rectifier).

3. RCD is not necessary when the UPS is installed in a TN-S system. RCD is not permitted on TN-C systems. If an RCD is required a B-type should be used. Must be coordinate with residual current circuit breakers downstream of the UPS connected to the UPS output.

4. Protection tripping downstream of the UPS with inverter short circuit current (Worst case = AUX MAINS not present). In the Normal case, with AUX MAINS present, fault clearing is determined by the Mains short-circuit capability.

5. Use cable with tin-plated eyelets for the connection

7. REFERENCE STANDARDS AND DIRECTIVES

7.1 OVERVIEW

The equipment, installed, used and serviced in accordance with its intended use, its regulations and standards, its manufacturer instructions and rules, is in compliance with the relevant Union harmonisation legislation:

LVD 2014 / 35 / EU

DIRECTIVE 2014/35/EU OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of 26 February 2014, on the harmonisation of the laws of the Member States relating to the making available on the market of electrical equipment designed for use within certain voltage limits.

EMC 2014 / 30 / EU

DIRECTIVE 2014/30/EU OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of 26 February 2014, on the harmonisation of the laws of the Member States relating to electromagnetic compatibility.

RoHS 2011/65/EU

Directive 2011/65 of the European parliament and of the council of 8 June 2011 on the restriction of the use of certain hazardous substances in electrical and electronic equipment

7.2 STANDARDS

7.2.1 SAFETY

EN 62040-1 Uninterruptible Power System (UPS) - Part 1: General sand safety requirements (certified by TÜV) IEC 62040-1 Uninterruptible Power System (UPS) - Part 1: Safety requirements (CB scheme by TÜV)

7.2.2 ELECTROMAGNETIC COMPATIBILITY

EN 62040-2 Uninterruptible Power System (UPS) - Part 2: Electromagnetic compatibility (EMC) requirements (LCIE) IEC 62040-2 Uninterruptible Power System (UPS) - Part 2: Electromagnetic compatibility (EMC) requirements (LCIE)

7.2.3 TEST AND PERFORMANCE

EN 62040-3 Uninterruptible Power System (UPS) - Part 3: Method of specifying the performance and test requirements

7.2.4 ENVIRONMENTAL

IEC 62040-4 Uninterruptible Power System (UPS) - Part 4: Environmental aspects - Requirements and reporting

7.3 SYSTEM AND INSTALLATION GUIDELINES

When carrying out electrical installation, all the above standards must be observed. All national and international standards (e.g IEC60364) applicable to the specific electrical installation including batteries must be observed. For further information refer to 'Technical specifications' chapter in the user manual.

ELITE UPS: a mark of efficiency

Socomec, as CEMEP UPS manufacturer member, has signed a Code of Conduct put forward by the Joint Research Centre of the European Commission (JRC), to ensure the protection of critical applications and processes ensuring 24/7 continuous high quality supply. The JRC commits to mitigating energy losses and gas emissions caused by UPS equipment, therefore maximising UPS efficiency.

MODULYS GP 25 to 200 kW Redundant Modular UPS

Socomec Resource Center To download, brochures, catalogues and technical manuals

OBJECTIVES

The purpose of these specifications is to provide the information required to prepare the system and installation site. The specifications are intended for:

- installation engineers.
- design engineers.
- engineering consultants.

For detailed information, see the installation and operating manual.

1. ARCHITECTURE

1.1 RANGE AND FLEXIBILITY

Modulys GP is a modular, scalable and redundant UPS system based on plug-in and hot-swap power modules.

The modularity enables power scalability by simply plugging one or more additional modules into the existing system (up to 8 modules per system).

The modularity also enables redundancy, which is an essential feature to ensure UPS system fault tolerance. The redundant configuration can be set from N+0 up to N+R, it is strongly recommended to use N+1 to benefit from all the great advantages of redundancy.

1.1.1 FLEXIBLE RATED POWER

POWER MODULES									
Number of Power Modules	1	2	3	4	5	6	7	8	3
N+1 redundant System Power (kW)	25 + 0 ⁽¹⁾	25 + 25	50 + 25	75 + 25	100 + 25	125 + 25	150 + 25	175 + 25	200 + 0 ⁽¹⁾

(1) No Power redundancy

1.1.2 FLEXIBLE CABLING

The standard solution has bottom cabling configuration.

As an option they can also accept top cabling and mixed top-bottom cabling.

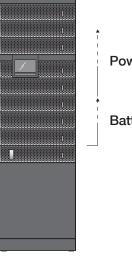
1.1.3 FLEXIBLE GROUNDING COMPATIBILITY

Compatible with any grounding system: TN-S, TN-C, TT, IT.

1.2 FLEXIBLE BACK-UP TIME

Different extended back-up times are possible by using: (1) the internal battery; (2) a modular battery cabinet; (3) a high capacity battery cabinet. The latter two occupy minimum floor space.

Each battery pack comprises an acid-proof container designed to prevent damage in the case of acid leakage.


Each Power Module has a powerful embedded battery charger able to provide up to 8 A (without derating).

A special Power Module with double battery charger inside is available when very long back-up times are required.

1.2.1 INTERNAL HOT-SWAP BATTERY

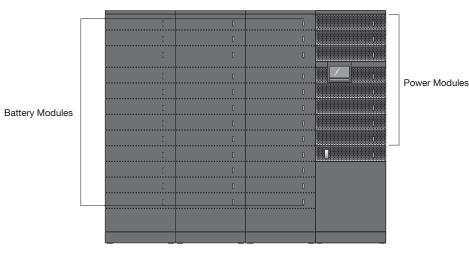
A standard UPS cabinet can house both Power Modules and Battery Boxes, thus providing a compact solution with a small footprint and optimised costs.

Each battery box has its own independent protection and it is hot-swappable.

Power Modules

Battery Modules

	INTERNAL HOT-SWAP BATTERY CABINET BACK UP TIMES IN MINUTES @ 75% OF RATED LOAD											
Numbe	er of Pow	ver Modu	ules	1	2	3	4	5	6	7	5	3
	N+1 redundant System Power (kW)			25 + 0 ⁽¹⁾	25 + 25	50 + 25	75 + 25	100 + 25	125 + 25	150 + 25	175 + 25	200 + 0 ⁽¹⁾
	1		5	/	/	/	/	/	/	/	/	/
p	2		10	6	6	/	/	/	/	/	/	/
Strir	3 AF	e Ah	15	11	11	/	/	/	/	/	/	/
er of	4	ultativ	20	16	16	6	/	/	/	/	/	/
Number of String	5	Cumultative	25	21	21	8	/	/	/	/	/	/
Ž	6		30	26	26	/	/	/	/	/	/	/
	7		35	34	34	/	/	/	/	/	/	/


(1) No Power redundancy

1.2.2 MODULAR HOT-SWAP BATTERY CABINET - MEDIUM CAPACITY

The modular battery system is based on vertical and horizontal modularity thanks to independent battery strings connected in parallel, each one made of hot-swap long life battery packs.

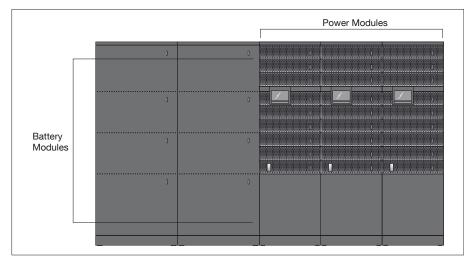
Each battery string has its own independent protection and its own independent switch for fast and safe maintenance.

DIMEN	SIONS AND WEIGHT											
	Number of Modular hot-swap battery cabinets - medium capacity											
	1	2	3									
	Number of battery strings											
	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34											
Height (mm)	1990											
Depth (mm)		950										
Width (mm)	810	1620	2430									
Weight (kg)	t 384 508 632 756 880 10041128125213761500162417482132225623802504262827522876300031243248337234963880400441284252437645004624474848724996512											

Vertical modularity using a modular battery cabinet with hot-swap battery boxes provides scalable power back-up with to 12 battery strings per cabinet.

Horizontal modularity provides very high and scalable back-up.

A standard temperature sensor optimises the battery recharging parameters according to the ambient operating temperature to extend battery life.



Nu	ımber	of P	ower	Mod	ules	1	2	3	4	5	6	7	5	3
N+1	redund	dant S	vstem	Power	r (kW)	25 + 0 ⁽¹⁾	25 + 25	50 + 25	75 + 25	100 + 25	125 + 25	150 + 25	175 + 25	200 + 0(1
			1		9	5	5							
			2		18	15	15	5						
			3		27	23	23	9	5					
			4		36	34	34	15	8	5				
			5		45	44	44	19	11	7	5			
			6		54	57	57	23	15	9	6	5		
	1		7		63	68	68	28	18	12	8	6	5	
			8		72	80	80	34	20	15	11	8	6	5
			9		81	92	92	40	23	17	13	9	7	6
			10		90	103	103	44	26	19	15	11	9	7
			11		99	116	116	51	30	21	17	13	10	8
			12		108	129	129	57	34	23	18	15	12	9
			13		117	141	141	63	38	25	20	16	13	11
			14		126	151	151	68	41	28	22	18	15	12
			15		135	163	163	73	44	31	23	19	16	14
nets		ß	16		144	177	177	80	48	34	25	20	17	15
cabi		/ strin	17	Ah	153	190	190	86	53	37	27	22	18	16
Number of battery cabinets	2	attery	18	ative	162	206	206	92	57	40	29	23	19	17
of ba	2	Numer of battery strings	19	Cumultative Ah	171	221	221	98	61	42	32	25	21	18
nber		umer	20	Ŭ	180	235	235	103	65	44	34	26	22	19
Nur		Z	21		189	249	249	109	68	47	37	28	23	20
			22		198	261	261	116	71	51	39	30	25	21
			23		207	272	272	123	75	54	41	32	26	22
			24		216	282	282	129	80	57	43	34	27	23
			25		225	294	294	135	84	60	44	36	29	24
			26		234	310	310	141	88	63	46	38	31	25
			27		243	326	326	146	92	66	49	40	33	26
			28		252	341	341	151	96	68	52	41	34	28
			29		261	354	354	156	99	71	55	43	36	30
	3		30		270	367	367	163	103	73	57	44	38	31
			31		279	383	383	170	107	76	59	46	39	33
			32		288	402	402	177	111	80	62	48	41	34
			33		297	419	419	183	116	83	64	51	42	36
			34		306	436	436	190	120	86	66	53	43	37
			35		315	451	451	197	125	89	68	55	44	39
			36		324	466	466	206	129	92	70	57	46	40

(1) No Power redundancy

1.2.3 MODULAR BATTERY CABINET - HIGH CAPACITY

DIMENSIONS AND WEIGHT								
Number of Strings 0 1								
Height (mm)	1990							
Depth (mm)	89	90						
Width (mm)	810							
Weight (kg)	220	1792						

High-capacity modular battery cabinets are designed for long back-up times (BUT) with higher power.

A standard temperature sensor optimizes the battery recharging parameters according to the ambient operating temperature to extend battery life.

	MODULAR BATTERY CABINET BACK-UP TIMES IN MINUTES @75% OF RATED LOAD													
N	Number of Power Modules					1	2	3	4	5	6	7	8	3
	N+1 redundant System Power (kW)			25 + 0 ⁽¹⁾	25 + 25	50 + 25	75 + 25	100 + 25	125 + 25	150 + 25	175 + 25	200 + 0 ⁽¹⁾		
lets	1	gs	1		92	119	119	56	33	21	15	-	-	-
cabinets	2	strings	2	Ah	184	279	279	119	75	56	45	33	25	21
	3		276	447	447	201	119	84	66	56	49	41		
of battery	4	of	4	Cumulative	368	654	654	279	170	119	89	75	62	56
Number	5	Number	5	õ	460	-	-	378	226	154	119	92	81	70
Nur	6	NN	6		552	-	-	-	279	201	146	119	96	84

(1) No Power redundancy

2. SPECIFICATIONS

2.1 INSTALLATION PARAMETERS

DIMENSIONS AND WEIGHT								
Number of Power Modules	1	2	3	4	5	6	7	8
Height (mm)	1990							
Depth (mm)					890			
Width (mm)	600							
Weight (kg)	286	319	352	385	418	451	484	517

RATED CURRENT AND MAX CURRENT									
Number of Power Modules	1	2	3	4	5	6	7	8	
N+1 redundant System Power (kW)	25 + 0 ⁽¹⁾	25 + 25	50 + 25	75 + 25	100 + 25	125 + 25	150 + 25	175 + 25	200 + 0 ⁽¹⁾
Rated rectifier input current (A) (EN 62040-1)	38	75	113	151	189	226	264	302	
Maximum rectifier input current (A) (EN 62040-3)	45	90	135	180	225	270	315	30	60
Nominal Inverter output current (A)	36	72	109	145	181	217	253	29	90
Maximum bypass input current (A) (EN 62040-3)	320								
Maximum battery current (A)	80	160	240	320	400	480	560	64	40

(1) No Power redundancy

COOLING										
Number of Power Modul	1	2	3	4	5	6	7	8	3	
N+1 redundant System Power (kW)	25 + 0 ⁽¹⁾	25 + 25	50 + 25	75 + 25	100 + 25	125 + 25	150 + 25	175 + 25	200 + 0(1)	
Maximum air flow (m3/h)		400	800	1200	1600	2000	2400	2800	3200 7980 9120	
	(VV)	1140	1140	2280	3420	4560	5700	6840	7980	9120
Power Dissipation under nominal conditions ⁽²⁾	(kcal/h)	980	980	1961	2941	3922	4902	5882	6863	7843
	(BTU/h)	3891	3891	7782	11672	15563	19454	23345	27236	31127
Power Dissipation	(VV)	1350	1350	2650	3950	5250	6550	7850	9150	10450
(maximum) under worst-case	(kcal/h)	1161	1161	2279	3397	4515	5633	6751	7869	8987
conditions ⁽³⁾	(BTU/h)	4608	4608	9044	13481	17918	22355	26792	31229	35666

(1) No Power redundancy

(2) nominal input voltage and rated output active power (PF=1)

(3) low input voltage, battery recharged and rated output active power (PF=1)

ACOUSTIC NOISE									
Number of Power Modules	1	2	3	4	5	6	7	8	
N+1 redundant System Power (kW)	25 + 0 ⁽¹⁾	25 + 25	50 + 25	75 + 25	100 + 25	125 + 25	150 + 25	175 + 25	200 + 0(1)
Acoustic noise at 1m (dBA) (2)	51	53	54	55	56	57	58	5	9

(1) No Power redundancy

(2) at 70% nominal load.

2.2 ELECTRICAL CHARACTERISTICS

2.2.1 ELECTRICAL CHARACTERISTICS INDEPENDENT OF THE NUMBER OF MODULES

ELECTRICAL CHARACTERISTICS - INPUT								
Rated mains supply voltage (V)	400 V 3-phase+N							
Voltage tolerance at full load	340 V to 480 V (+20/-15%)							
Voltage tolerance at derated load	up to 240 V @ 50% of nominal load (linear decrease)							
Rated frequency (Hz)	40 - 70 Hz							
Power factor	> 0.99(1)							
Total harmonic input current distortion (THDi)	\leq 3% (@: Pn, Resistive load, Mains THDv \leq 1%)							
Max inrush current at start-up	Power walk-in/Soft-start (selectable parameters)							

(1) Pout \geq 50% of nominal Power.

ELECTRICAL CHARACTERISTICS - BYPAS	S
Bypass rated voltage (V)	Nominal output voltage ±15% (±20% if GENSET is used)
Bypass rated frequency (Hz)	50/60
Bypass frequency tolerance	±2% selectable (±8% if GENSET is used)
Bypass frequency variation speed	50/60 ±10%
ELECTRICAL CHARACTERISTICS - INVERT	ER
Rated output voltage (V)	(3ph + N) 400 380/400/415 selectable
Output voltage tolerance (V)	±1%
Rated output frequency (Hz)	50/60 (selectable)
Output frequency tolerance	±0.05% (on battery mode)
Load crest factor	≥ 2.7:1
Total output voltage distortion (THDv)	\leq 1% (Ph/Ph); \leq 2% (Ph/N) (@: Pn, Resistive load)
ELECTRICAL CHARACTERISTICS - STORE	D ENERGY OPERATING MODE
Number of battery blocks (VRLA)	From 18+18 to 24+24 ⁽¹⁾
ELECTRICAL CHARACTERISTICS - EFFICIE	ENCY
Efficiency (on-line mode)	up to 96.5%

Efficiency (on-line mode)up to 96.5%Efficiency (eco-mode)up to 99.3%

(1) Consult us

ELECTRICAL CHARACTERISTICS - BYF	ELECTRICAL CHARACTERISTICS - BYPASS OVERLOAD AND SHORTCIRCUIT									
Number of Power Modules		1 → 8								
	Nominal	290								
	Continuous	320								
Bypass overload (A)	10'	362								
	1'	450								
	1"	510								
Bypass Max short-circuit current ITSM (A)		9000								
Bypass I ² t (A ² s)		40000								

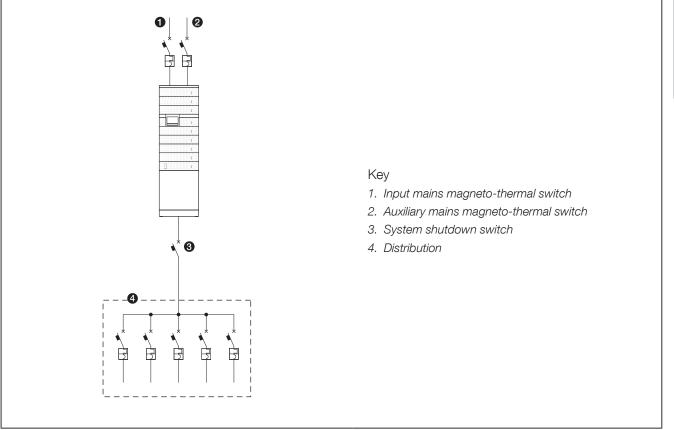
ELECTRICAL CHARACTERISTICS - SYSTEM SHORTCIRCUIT SAFETY PERFORMANCE							
Number of Power Modules	1 → 8						
Short-circuit current withstand (Icw)	10 kA						
Conditional short-circuit current (lcc)	50 kA						

2.2.2 ELECTRICAL CHARACTERISTICS DEPENDENT ON THE NUMBER OF MODULES

ELECTRICAL CHA	ELECTRICAL CHARACTERISTICS - INVERTER OVERLOAD AND SHORT-CIRCUIT										
Number of Power Mod	1	2	3	4	5	6	7	5	3		
N+1 redundant System Power (kW)	25 + 0 ⁽¹⁾	25 + 25	50 + 25	75 + 25	100 + 25	125 + 25	150 + 25	175 + 25	200 + 0 ⁽¹⁾		
	10 min	31,2	62,4	94	125	157	188	219	25	50	
Inverter overload (kW)(2)	5 min	33,3	66,5	100	133	166	200	233	20	266	
	1 min	37,5	75,0	113	150	188	225	263	30	300	
Inverter short-circuit (A)	40 ms	100	200	300	400	500	600	700	80	00	
lk1 = lk2 = lk3	40 to 100 ms	80	160	240	320	400	480	560	64	40	

(1) No Power redundancy

(2) Conditions: Initial Pout \leq 80% Pn, Vin nominal


ELECTRICAL CHARACTERISTICS - BATTERY CHARGER MAX CURRENT									
Number of Power Modules	1	2	3	4	5	6	7	8	3
N+1 redundant System Power (kW)	25 + 0 ⁽¹⁾	25 + 25	50 + 25	75 + 25	100 + 25	125 + 25	150 + 25	175 + 25	200 + 0 ⁽¹⁾
Standard Maximum Current (A)	8	16	24	32	40	48	56	64	64
Enhanced Battery Charger Maximum current (A)	16	32	48	64	80	96	112	128	128

(1) No power redundancy

2.3 RECOMMENDED PROTECTION

2.3.1 SYSTEM FROM 25 TO 200 kW

The installation and system should comply with national plant regulations.

The electrical distribution panel should have a sectioning and protection system installed for input and auxiliary mains.

SYSTEM CABLES - MAX SECTION							
Number of Modu	ules	1 → 8					
Destifier terminals (mm ²)	Flexible	2 x 150					
Rectifier terminals (mm ²)	Rigid	2 x 150					
Durages terminals (mm ²)	Flexible	2 x 150					
Bypass terminals (mm²)	Rigid	2 x 150					
Pottony torminala (mm ²)	Flexible	2 x 150					
Battery terminals (mm ²)	Rigid	2 x 150					
Output torminals (mm ²)	Flexible	2 x 150					
Output terminals (mm ²)	Rigid	2 x 150					

M10 terminals

Tightening torque 20 Nm

Maximum cross-section is determined by the size of the terminals.

As specified in EN 62040-3 Appendix 3 (Non-Linear Load Reference), in the event of three-phase non-linear loads connected downstream of the UPS, the neutral current on the load can be 1.5 - 2 times higher than the phase current. This should be taken into account when estimating the correct size of output and auxiliary neutral cables.

RECOMMENDED	PROTECT	ION DE	/ICES -	Rectifie	r					
Number of Mo	odules	1	2	3	4	5	6	7	8	3
N+1 redundant Syste	m Power (kW)	25 + 0 ⁽¹⁾	25 + 25	50 + 25	75 + 25	100 + 25	125 + 25	150 + 25	175 + 25	200 + 0(1)
Circuit breaker with	Minimum	50	100	160	200	250	320	400	4(00
$\text{Im} \le 10 \times \text{In} (\text{A})$	Maximum	400	400	400	400	400	400	400	4(00

(1) No Power redundancy

A circuit breaker switch is recommended with magnetic intervention threshold ≥ 10 In.

It is necessary to use a circuit breaker with $Im \le 20 \times In$ (A) selective breaker if an optional external transformer is used. The minimum value depends on the size of the power cables in the installation, while the maximum value is limited by the UPS cabinet.

The system can accept the maximum value of protection, regardless of the number of modules installed, in order to enable future scalability, while the minimum value depends on the size of the power cables in the installation. A protection value of less than the maximum shall be used when the mains grid structure cannot support the full power load, and shall be chosen between the minimum and maximum values (as per the table above) according to mains grid design.

Rectifier protection should be taken into account in the event of separate inputs; when the auxiliary mains and rectifier inputs are combined (common input), the general input protection rating should be higher than both (auxiliary mains or rectifier).

RECOMMENDED	PROTECT	ION DE	VICES -	Auxiliar	y mains					
Number of Mo	odules	1	2	3	4	5	6	7	8	3
N+1 redundant Syste	m Power (kW)	25 + 0(1)	25 + 25	50 + 25	75 + 25	100 + 25	125 + 25	150 + 25	175 + 25	200 + 0(1)
Circuit breaker with	Minimum	50	100	160	200	250	320	400	4(00
$\text{Im} \le 10 \text{ x In} (\text{A})$	Maximum	400	400	400	400	400	400	400	4(00

(1) No Power redundancy

A circuit breaker switch is recommended with magnetic intervention threshold ≥ 10 ln.

It is necessary to use a circuit breaker with $Im \le 20 \times In$ (A) selective breaker if an optional external transformer is used. The minimum value depends on the size of the power cables in the installation, while the maximum value is limited by the UPS cabinet.

The conditional short circuit current (lcc) according to IEC 62040-1 is 65KA rms, provided that the UPS is protected by a MCCB with adequate breaking capability and current-limiting capability under short-circuit conditions. Contact us for detailed information.

RECOMMENDED PR	ROTECTIC	ON DEVI	CES - Up	ostream	Residua	I Current	Detection	Circuit B	reaker	
Number of Modu	ules	1	2	3	4	5	6	7	8	3
N+1 redundant System I	Power (kW)	25 + 0 ⁽¹⁾	25 + 25	50 + 25	75 + 25	100 + 25	125 + 25	150 + 25	175 + 25	200 + 0(1)
Residual Current Detection (A)	Minimum					0.5				

(1) No Power redundancy

An RCD is not necessary when the UPS is installed on a TN-S system. RCDs are not allowed on TN-C systems. If an RCD is required, a B type should be used.

Caution! Use four-pole selective (S) residual current detectors (RCDs). Load leakage currents are to be added to those generated by the UPS and short current peaks may occur during transitory phases (power failures and power returns). If loads with high leakage current are present, adjust the residual current protection. It is advisable in all cases to carry out a preliminary check on the ground current leakage with the UPS installed and operating with the definitive load, so as to prevent tripping of the RCD switch.

OUTPUT SELECTIVI	TY ON BA	TTERY	MODE (/	AUX MAI	NS NOT	PRESEN	T)															
Number of Mode	ules	1	2	3	4	5	6	7	8	3												
N+1 redundant System Power (kW) 25 + 0 ⁽¹⁾ 25 + 25 50 + 25 75 + 25 100 + 25 125 + 25 150 + 25 175 + 25 200 + 0																						
Circuit breaker with $Im \le 5 \times In (A)$	Maximum	13	25	40	50	63	80	100	1(00												
Circuit breaker with $Im \le 10 \times In (A)$	Maximum	6	13	20	25	32	40	50	5	Circuit breaker with Im ≤ Maximum 6 13 20 25 32 40 50 50												

(1) No Power redundancy

MODULYS GP 25 to 200 kW

3. REFERENCE STANDARDS AND DIRECTIVES

3.1 OVERVIEW

The construction of the equipment and choice of materials and components comply with all laws, decrees, directives and standards currently in force. In particular, the equipment is fully compliant with all European Directives concerning CE marking.

2014/35/EU

Directive 2014/35/EU of the European Parliament and of the Council of 26 February 2014 on the harmonisation of the laws of the Member States relating to the making available on the market of electrical equipment designed for use within certain voltage limits.

2014/30/EU

Directive 2014/30/EU of the European Parliament and of the Council of 26 February 2014 on the harmonisation of the laws of the Member States relating to electromagnetic compatibility.

2011/65/EU

Directive 2011/65/EU of the European Parliament and of the Council of 8 June 2011 on the restriction of the use of certain hazardous substances in electrical and electronic equipment.

3.2 STANDARDS

STANDARD	
Safety	EN/IEC 62040-1 - AS 62040-1
EMC	EN/IEC 62040-2 - AS 62040-2
Product certification	IECEE CB Scheme
Performance	EN/IEC 62040-3 - AS 62040-3
Product marks	$CE - RCM^{(1)} - EAC^{(1)} - CMIM^{(1)} - UKCA^{(1)}$
Protective class	Protective Class I
Protection level	IP20

(1) Depends on the production site. Consult the data plate on the equipment

ELITE UPS: a mark of efficiency

Socomec, as CEMEP UPS manufacturer member, has signed a Code of Conduct put forward by the Joint Research Centre of the European Commission (JRC), to ensure the protection of critical applications and processes ensuring 24/7 continuous high quality supply. The JRC commits to mitigating energy losses and gas emissions caused by UPS equipment, therefore maximising UPS efficiency.

MODULYS RM GP

Rack-mounted modular UPS system

Green Power 2.0 range

up to 4 x 25 kVA/kW

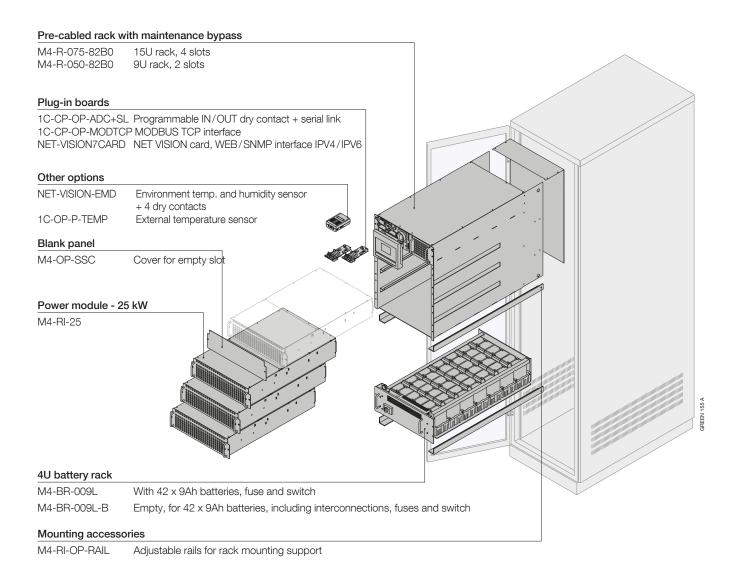
Socomec Resource Center To download, brochures, catalogues and technical manuals

OBJECTIVES

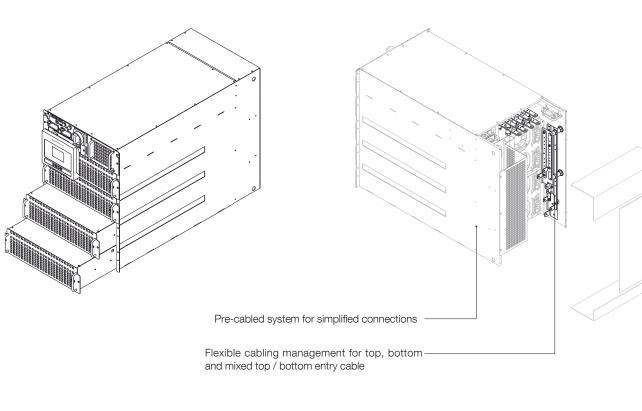
The aim of these specifications is to provide the information required to prepare the system and installation site. The specifications are intended for:

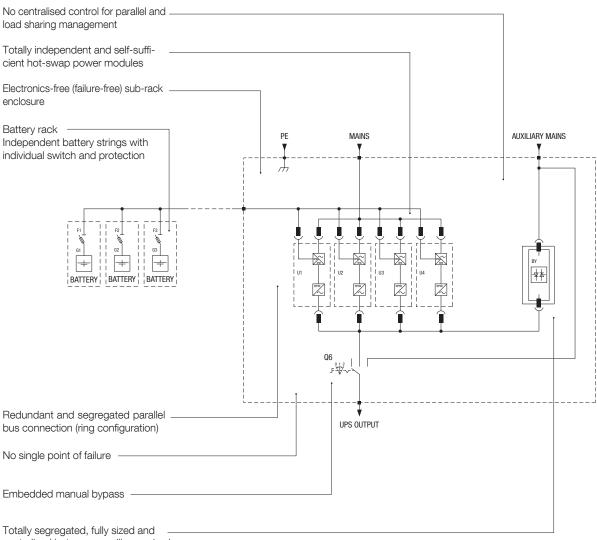
- installation engineers,
- design engineers,
- engineering consultants.

Please contact us for further information, or if you would like to receive a full documentation package for detailed product know-how, including schematics, integration instructions, technical data sheets, user's manual, etc.


1. ARCHITECTURE

1.1 RANGE AND FLEXIBILITY


MODULYS RM GP is a 3-phase modular UPS system designed for 19" rack integration. The product is easy to integrate and install, as well as being very simple to operate and maintain. It provides maximum power availability and protection in a compact design that leaves free space for other rack mounted devices.


MODULYS RM GP:

- provides easy and fully-assured rack integration to meet all requirement across multiple applications, even for existing installations;
- simplifies and optimises every step of the integration process from sizing to installation, including the logistics, making project management easy, risk-free and economic;
- provides reliable power whilst ensuring optimum load protection even during power upgrades or maintenance procedures.

centralised hot-swap auxiliary mains bypass

CONFIGURATIONS AND RATE	D POWER (kW)				
		r for the second s)
				RI-25	
				ower modules	
		1	2	3	4
	N configuration	25	50	75	-
M4-R-075-82B0	N+1 redundancy	_	25	50	75
	N configuration	25	50	-	-
	1+1 redundancy	-	25	-	-
M4-R-050-82B0					

1.2 FLEXIBLE BACK-UP TIME

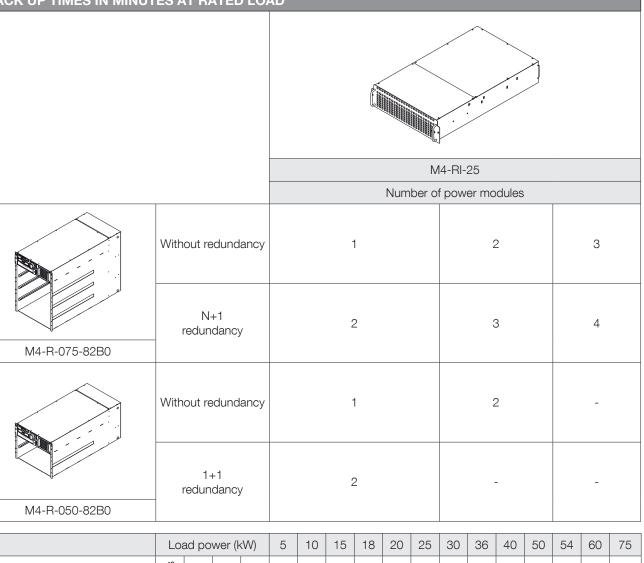
Different extended back-up times are possible by using: (1) 4U rack-mounted battery modules; (2) a modular battery cabinet; (3) a high capacity battery cabinet.

Each battery pack comprises an acid-proof container designed to prevent damage in case of acid leakage.

Each Power Module has a powerful embedded battery charger able to provide up to 8 A (without power derating). A special Power Module with extra battery charger inside is available when very long back-up times are required. MODULYS RM GP is compatible with different battery technologies.

BATTERY BLOCK DYNAMICS ⁽¹⁾		
Sealed lead-acid	Min	108 + 108
	Max	144 + 144
	Min	108 + 108
Open vented (flooded lead-acid)	Max	144 + 144
Nickel Cadmium	Min	180 + 180
	Max	228 + 228

(1) 2 strings/3 cables configuration (+ N -).



MODULYS RM GP up to 4 x 25 kVA/KW

1.2.1 4U RACK-MOUNTED BATTERY MODULES

DIMENSIONS AND WEIGHT		
	Height (mm)	175
	Depth (mm)	920
	Width (mm)	442 (482)
	Weight - empty (kg)	23
M4-BR-009L	Weight - with batteries (kg)	136

4U RACK-MOUNTED BATTERY MODULES BACK UP TIMES IN MINUTES AT RATED LOAD

	LU	au po	wei (r	(• •)	9	10	10	10	20	20	00	00	1 40	50	04	00	10
	cks	1		9	25	11	6	4	3	-	-	-	-	-	-	-	-
	ry rac	2	Ah	18	62	26	17	13	11	8	6	4	3	-	-	-	-
	batter	3	mulative	27	100	44	26	22	19	15	11	8	7	5	4	3	-
	of	4	mula	36	138	64	40	31	26	20	17	13	11	8	7	6	4
	nber	5	Our	45	176	84	51	41	37	26	21	17	15	11	9	8	6
M4-BR-009L	Nur	> 5								cons	ult us						

1.2.2 MODULAR HOT-SWAP BATTERY CABINET

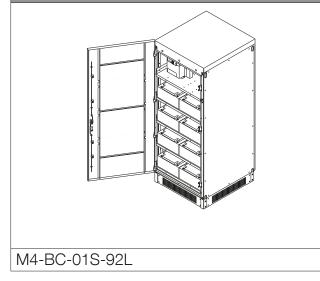
The modular battery system is based on vertical and horizontal modularity thanks to independent battery strings connected in parallel, each string comprising hot-swap long life battery packs.

Each battery string has its own independent protection and its own independent switch for fast and safe maintenance.

MODULAR HOT-SWAP BATTERY CABINE	Т	
	Number of strings	Item code
	0 (empty cabinet)	M4-BH-00S-009L
	1	M4-BH-01S-009L
	2	M4-BH-02S-009L
	3	M4-BH-03S-009L
	4	M4-BH-04S-009L
	5	M4-BH-05S-009L
	6	M4-BH-06S-009L
	7	M4-BH-07S-009L
	8	M4-BH-08S-009L
	9	M4-BH-09S-009L
	10	M4-BH-10S-009L
	11	M4-BH-11S-009L
	12	M4-BH-12S-009L

DIM	Eľ	١S	SIC	N	S.	AN	D١	٧E	IGł	łT																											
																Nu	mbe	ər o	f ba	atter	у са	abir	nets														
								1											2	2											3	3					
																	N	umł	oer	of s	trin	gs															
	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
Height (mm)																			19	90																	
Depth (mm)																			95	50																	
Width (mm)							8	10											16	20											24	30					
Weight (kg)	260	260 384 508 508 632 632 632 1376 1128 880 880 1376 1500 1502 1128 1248 1748 1748 3124 3124 3372 3372 3372 3372 3372 3372 3372 33																																			

MODULAR HOT-SWAP BATTERY CABINET BACK UP TIMES IN MINUTES @ 75 % OF RATED LOAD


							ber of p modules								Numl power r	ber of modules
Witho	ut redu	ndancy				1	2	3	Withc	out redu	undano	су			1	2
N+1 r	edunda	incy				2	3	4	1+1 r	edunda	ancy				2	-
			1		9	5	-	-				1		9	5	-
			2		18	15	5	-				2		18	15	5
			3		27	23	9	5				3		27	23	9
			4		36	34	15	8				4		36	34	15
			5		45	44	19	11				5		45	44	19
	1		6		54	57	23	15		1		6		54	57	23
			7		63	68	28	18				7		63	68	28
			8		72	80	34	20				8		72	80	34
			9		81	92	40	23				9		81	92	40
			10		90	103	44	26				10		90	103	44
			11		99	116	51	30				11		99	116	51
			12		108	129	57	34				12		108	129	57
			13		117	141	63	38				13		117	141	63
			14		126	151	68	41				14		126	151	68
Ś			15		135	163	73	44	ŝ			15		135	163	73
oinet:			16		144	177	80	48	inet			16		144	177	80
Number of battery cabinets		Number of strings	17	Ah	153	190	86	53	Number of battery cabinets		Number of strings	17	Ah	153	190	86
ittery	2	of st	18	ative	162	206	92	57	ittery	2	of st	18	ative	162	206	92
of ba	2	ber	19	Cumulative Ah	171	221	98	61	of ba	2	ber	19	Cumulative Ah	171	221	98
ber o		Mum	20	Ou	180	235	103	65	ber o		Mum	20	Cu	180	235	103
Jum			21		189	249	109	68	Mum			21		189	249	109
~			22		198	261	116	71	~			22		198	261	116
			23		207	272	123	75				23		207	272	123
			24		216	282	129	80				24		216	282	129
			25		225	294	135	84				25		225	294	135
			26		234	310	141	88				26		234	310	141
			27		243	326	146	92				27		243	326	146
			28		252	341	151	96				28		252	341	151
			29		261	354	156	99				29		261	354	156
	0		30		270	367	163	103		0		30		270	367	163
	3		31		279	383	170	107		3		31		279	383	170
			32]	288	402	177	111				32		288	402	177
			33		297	419	183	116				33		297	419	183
			34		306	436	190	120				34		306	436	190
			35		315	451	197	125				35		315	451	197
			36		324	466	206	129				36		324	466	206

For very long BUT, it is recommended to use the power module with 16 A charging current (refer to page 14).

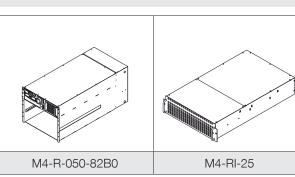
1.2.3 MODULAR BATTERY CABINET - HIGH CAPACITY

MODULAR HOT-SWAP BATTERY CABINET

DIMENSIONS AND WEIGHT					
	Number of strings				
	0 1				
Height (mm)	1990				
Depth (mm)	890				
Width (mm)	810				
Weight (kg)	220 1792				

MODULAR BATTERY CABINET BACK UP TIMES IN MINUTES @ 75 % OF RATED LOAD								
						Number	of power	modules
With	nout r	edun	danc	У		1	2	3
N+1	redu	ındar	юу			2	3	4
lets		ŚŚ	1		92	119	56	33
cabin		y rack	2	Ч	184	279	119	75
ttery	1	atter	3	Cumulative Ah	276	447	201	119
of ba		er of b	4	Imula	368	654	279	170
Number of battery cabinets		Number of battery racks	5	Ŭ	460	-	378	226
Nur		Ź	6		552	-	-	279

MODULAR BATTERY CABINET BACK UP TIMES IN MINUTES @ 75% OF RATED LOAD							
						Number of po	ower modules
With	nout r	edun	danc	y		1	2
1+1	1+1 redundancy				2	-	
lets	ر بر 1	1		92	119	56	
cabir		y racl	2	Υh	184	279	119
ttery	4	atter	3	Cumulative Ah	276	447	201
of ba		er of b	4	alum	368	654	279
Number of battery cabinets		Number of battery racks	5	Ũ	460	-	378
Nur		Ź					


For very long BUT, it is recommended to use the power module with 16 A charging current (refer to page 14).

2. SPECIFICATIONS

2.1 INSTALLATION PARAMETERS

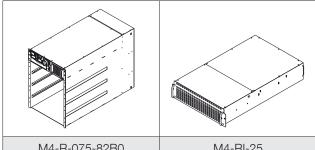
			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			
M4-R-075-82E	30		M4-F	RI-25		
CONFIGURATIO	NS AND	RATE	D PO	<b>NE</b> R	(	(W)
		Numb	er of po	ower r	mc	dules
		1	2	3		4
N configuration		25	50	75		-
N+1 redundancy		-	25	50		75
RATED CURREN	T AND	MAX C	URRE	INT		
		Numb	er of po	ower r	mc	dules
Without redundancy		1	2	2		3
N+1 redundancy	2	3	3		4	
Ratedrectifierinputcu (EN 62040-3)	urrent(A)	37.7	7	5		113
Max rectifier input cu (EN 62040-3)	rrent (A)	45.0	9	0		135
Rated inverter outp rent (A)	out cur-	36.2	7	2		109
Maximum bypass in rent (A) (EN 62040-3			12	20		
Max battery current (	(A)	80	16	60		240
COOLING						
		Numb	er of po	ower r	mc	dules
Without redundancy		1	2	2		3
N+1 redundancy		2	3	3		4
Maximum air flow	m³/h	400	80	00		1200
	W	1140	22	80	;	3420
Max dissipation in nominal conditions ⁽¹⁾	kcal/h	980	19	61		2941
	BTU/h	3891	77	82	1	1672
	W	1350	26	50	;	3950
Max dissipation in worst conditions ⁽²⁾	kcal/h	1161	22	79		3397
	BTU/h	4608	90	44	1	3481



CONFIGURATIONS AND RATED POWER (KW)						
	Number of po	ower modules				

		1	2	
N configuration		25	50	
1+1 redundancy		-	25	
RATED CURREN	T AND	MAX CURRE	ENT	
		Number of po	wer modules	
Without redundancy		1	2	
1+1 redundancy		2	-	
Rated rectifier input cu (EN 62040-3)	urrent(A)	37.7	75	
Max rectifier input cu (EN 62040-3)	ırrent (A)	45.0	90	
Rated inverter output (A)	t current	36.2	72	
Maximum bypass input cur- rent (A) (EN 62040-3)		120		
Max battery current (A)		80	160	
COOLING				
		Number of power modules		
Without redundancy		1	2	
1+1 redundancy		2	-	
Maximum air flow	m³/h	400	800	
	W	1140	2280	
Max dissipation in nominal conditions ⁽¹⁾	kcal/h	980	1961	
	BTU/h	3891	7782	
	W	1350	2650	
Max dissipation in worst conditions ⁽²⁾	kcal/h	1161	2279	

BTU/h


4608

(1) Nominal input voltage and rated output active power (PF1).

(2) Low input voltage, battery recharge and rated output active power (PF1).

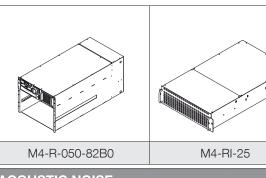


9044



M4-R-075-82B0

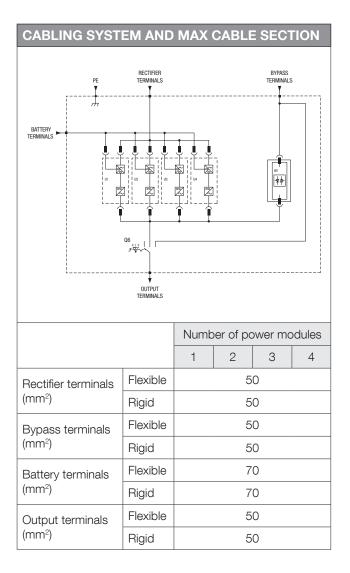
M4-RI-25

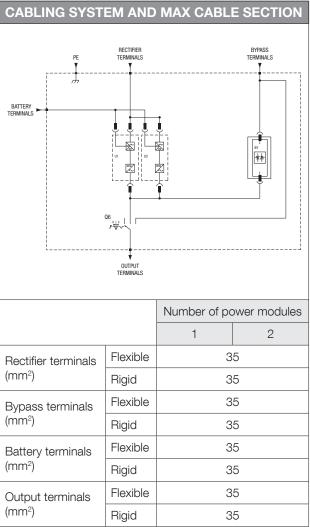

ACOUSTIC NOISE			
	Number of power modules		
Without redundancy	1	2	3
N+1 redundancy	2	3	4
Acoustic noise at 1 m (dBA) ⁽¹⁾	51	53	54

### (1) 75% of nominal load.

DIMENSIONS AND WEIGHT				
	Numb	Number of power modules		
	1	2	3	4
Height (mm)		66	54	
Depth (mm)		92	20	
Width (mm)	442 (482)			
Weight - sub-rack (kg)	49			
Weight (kg)	82 115 148 18			181
ENVIRONMENT				
Storage temperature	-5 to +50 °C			
Operating temperature	0 to 40 °C ⁽¹⁾⁽²⁾			
Maximum relative humidity	95% condensation-free			-free
Degree of protection		IP	20	

(1) According to EN 62040-3.


(2) For optimum battery lifetime the ideal temperature range is 15 °C - 25 °C




ACOUSTIC NOISE					
	Number of power module				
Without redundancy	1	2			
1+1 redundancy	2	-			
Acoustic noise at 1 m (dBA) ⁽¹⁾	51	53			

DIMENSIONS AND WEIGHT				
	Number of power module			
	1	2		
Height (mm)	39	97		
Depth (mm)	920			
Width (mm)	442 (482)			
Weight - sub-rack (kg)	43			
Weight (kg)	76 109			
ENVIRONMENT				
Storage temperature	-5 to +50 °C			
Operating temperature	0 to 40 °C ⁽¹⁾⁽²⁾			
Maximum relative humidity	95% condensation-free			
Degree of protection	IP:	20		







### 2.2 ELECTRICAL CHARACTERISTICS

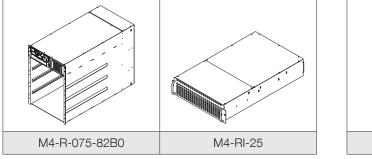
### 2.2.1 ELECTRICAL CHARACTERISTICS INDEPENDENT OF THE NUMBER OF MODULES

ELECTRICAL CHARACTERISTICS - INPUT				
Rated mains supply voltage (V)	400 V 3-phase+N			
Voltage tolerance at full load	340 V to 480 V (+20/-15%)			
Voltage tolerance at derated load	up to 240 V @ 50 % of nominal load (linear decrease)			
Rated frequency (Hz)	50/60 ±10%			
Power factor	> 0.99(1)			
Total harmonic input current distortion (THDi)	$\leq$ 3 % (@: Pn, Resistive load, Mains THDv $\leq$ 1 %)			
Max inrush current at start-up	Power walk-in/Soft-start (selectable parameters)			
Max inrush current at start-up	Power walk-in/Soft-start (selectable parameters)			

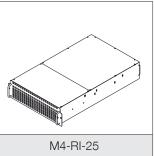
(1) Pout ≥ 50 % Sn.

ELECTRICAL CHARACTERISTICS - BYPASS				
Bypass rated voltage (V)	Nominal output voltage $\pm 15\%$ ( $\pm 20\%$ if GENSET is used)			
Bypass rated frequency (Hz)	50/60			
Bypass frequency tolerance (Hz)	$\pm 2\%$ selectable ( $\pm 8\%$ if GENSET is used)			
Bypass frequency variation speed	50/60 ±10%			

ELECTRICAL CHARACTERISTICS - INVERTER					
Rated output voltage (V)	(3ph + N) 380/400/415 selectable				
Output voltage tolerance (Hz)	±1				
Rated output frequency (Hz)	50/60 (selectable)				
Output frequency tolerance	±0.05 % (on battery mode)				
Load crest factor	≥ 2.7:1				
Total output voltage distortion (THDv)	$\leq$ 1 % (Ph/Ph); $\leq$ 2 % (Ph/N) (@: Pn, Resistive load)				


ELECTRICAL CHARACTERISTICS - STORED ENERGY OPERATING MODE					
Number of battery blocks (VRLA)	From 18+18 to 24+24				

ELECTRICAL CHARACTERISTICS - EFFICIENCY				
Efficiency (on-line mode) up to 96.5 %				
Efficiency (eco-mode)	up to 99.3 %			






### 2.2.2 ELECTRICAL CHARACTERISTICS DEPENDENT OF THE NUMBER OF MODULES







### ELECTRICAL CHARACTERISTICS - INVERTER OVERLOAD

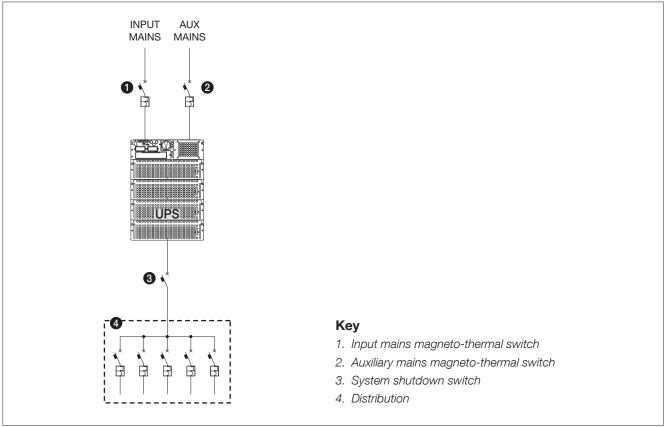
			Number	of power	modules
			1	2	3-4
		10 min	31.2	62.4	94
Inverter c  (kW)(1)	Inverter overload	5 min	33.3	66.5	100
		1 min	37.5	75.0	113

		Number of p	ower modules
		1	2
	10 min	31.2	62.4
Inverter overload (kW)(1)	5 min	33.3	66.5
	1 min	37.5	75.0

(1) Initial condition Pout  $\leq$  80 % Pn.

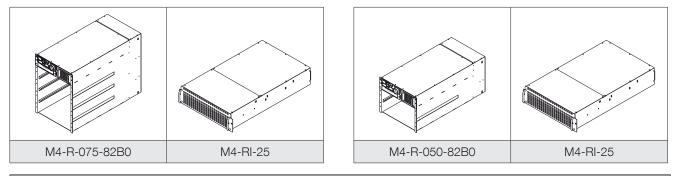
ELECTRICAL CHARACTERISTICS - INVERTER SHORT-CIRCUIT										
		Numb	per of po	ower mo	odules				Number of po	wer modules
		1	2	3	4				1	2
Inverter short-circuit	40 ms	100	200	300	400		Inverter short-circuit	40 ms	100	200
(A) $ k1  =  k2  =  k3 $	40 to 80 ms	80	160	240	320			40 to 80 ms	80	160

#### ELECTRICAL CHARACTERISTICS - BYPASS OVERLOAD AND SHORT-CIRCUIT


_		Number of power modules						
	1	2	3	4				
	Nominal		109					
Bypass overload (A)	Continuous		12	20				
	30 min	136						
	10 min		163					
	1 sec	> 190						
Bypass I²t (A²s)	130000							
Bypass Max Peak Cu		50	00					

		Number of power modules						
		1	2					
	Nominal	7	3					
Bypass overload (A)	Continuous	8	0					
	30 min	91						
	10 min	1(	)9					
	1 sec	> 127						
Bypass I²t (A²s)		130000						
Bypass Max Peak Cu	rrent (A)	5000						

ELECTRICAL CHARACTERISTICS - BATTERY CHARGER MAX CURRENT									
	Numb	er of po	ower mo	odules	Number of power modules				
	1	2	3	4	1 2				
Standard max. current (A) M4-RI-25	8	16	24	32	Standard max. current (A) 8 16 M4-RI-25				
Enhanced battery charger max. current (A) M4-RI-25+CH	16	32	48	64	Enhanced battery charger max. current (A) 16 32 M4-RI-25+CH 32				




### 2.3 RECOMMENDED PROTECTION DEVICES



The installation and system should comply with national plant regulations.

The electrical distribution panel should have a sectioning and protection system installed for input and auxiliary mains.



RECOMMENDED	<b>PROTECTION DEVICE</b>	S - RECTIFIER

	Number of power modules			
Without redundancy	1	2	3-4	
N+1 redundancy	2	3	4	
C curve circuit breaker (A)	Min	50	100	160
	Max	160		
Gg fuse (A)	Min	50	100	160
	Max		160	

Eł								
			Number of power modules					
	Without redundance	су	1	2				
	1+1 redundancy		2	-				
	C curve circuit	Min	50	100				
	breaker (A)	Max	1	60				
		Min	50	100				
	Gg fuse (A)	Max	100					



A circuit breaker switch is recommended with a magnetic tripping threshold of  $\geq$  10 In (curve C). A D curve selective breaker should be fitted if an optional external transformer is used.

The minimum value depends on the size of the power cables in the installation, while the maximum value is limited by the UPS cabinet.

The system can accept the max. value of protection, whatever the number of modules installed, in order to allow future scalability, while the min. value depends on the size of the power cables in the installation. A value of protection less than the recommended Max shall be used when the mains network structure cannot support the full power load, and shall be chosen between max. and min. values (as per the table below) according to the mains network design.

Rectifier protection should be taken into account in the event of separate inputs; when the auxiliary mains and rectifier inputs are combined (common input), the general input protection rating should be higher than both (auxiliary mains or rectifier).

<b>RECOMMENDED PROTECTION DEVICES - AUXILIARY MAINS</b>					MAINS
		Number of power modules			
		1	2	3	4
	Min	50	100	160	200
C curve circuit breaker (A)	Max		20	00	
	Min	50	100	160	200
Gg fuse (A)	Max	200			

If an optional external transformer is used, a D curve selective breaker should be used.

Auxiliary mains protection should be taken into account in the event of separate inputs; when the auxiliary mains and rectifier inputs are combined (common input), the general input protection rating should be higher than both (auxiliary mains or rectifier).

RECOMMENDED PROTECTION DEVICES - INPUT RESIDUAL CURRENT CIRCUIT BREAKER				
	Number of power modules			
	1	2	3	4
Input residual current circuit breaker (A)	0.5			

An RCD is not necessary when the UPS is installed in TN-S system. RCDs are not allowed on TN-C systems. If an RCD is required, a B type should be used.

### Caution!

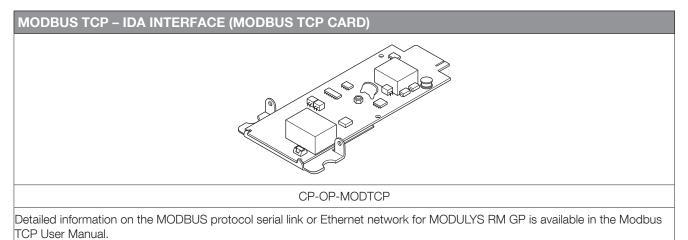
Use four-pole selective (S) residual current detectors (RCDs). Load leakage currents are to be added to those generated by the UPS and during transitory phases (power failures and power returns) short current peaks may occur. If loads with high leakage current are present, adjust the residual current protection. It is advisable in all cases to carry out a preliminary check on the earth current leakage with the UPS installed and operating with the definitive load, so as to prevent the sudden activation of the RCD switch.

OUTPUT SELECTIVITY ON BATTERY MODE (AUX MAINS NOT PRESENT)				
	Number of power modules			ules
	1	2	3	4
B curve circuit breaker (A)	≤ 20	≤ 40	≤ 50	≤ 80
C curve circuit breaker (A)	≤ 10	≤ 20	≤ 25	≤ 40

Selectivity of distribution downstream of UPS with downstream short-circuit (AUX MAINS not present).



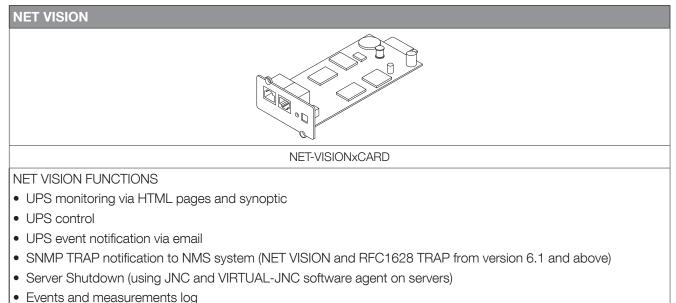
### 2.4.1 PROGRAMMABLE IN/OUT DRY CONTACT CARD WITH SERIAL LINK


The board is plug&play: the UPS is able to recognize its presence and configuration.

Up to 4 standard operating modes can be selected simply using two jumpers; the selected operating mode manages the ADC outputs and the inputs accordingly.

It is also possible to create a custom operation mode (consult us).

PROGRAMMABLE IN/OUT DRY CONTACT CARD WITH SERIAL LINK				
CP-OP-ADC+SL				
• 4 relays for external device activation (can be set as normally closed or normally open)	<ul> <li>general alarm,</li> <li>back-up operation,</li> <li>bypass operation,</li> <li>preventive maintenance request.</li> </ul>			
• 3 free inputs to report external contacts to UPS	<ul><li>emergency stop devices (ESD),</li><li>operation with generating set,</li><li>battery protection status.</li></ul>			
<ul> <li>1 connector for external temperature sensor (optional)</li> <li>RS485 insulated serial link providing MODBUS RTU protocol</li> <li>2 LEDs to display the board status</li> </ul>				


### 2.4.2 MODBUS TCP CARD FOR CONNECTION WITH BMS SYSTEM





### 2.4.3 NET VISION CARD FOR INTERFACE WITH IT INFRASTRUCTURE

Net Vision is a network adapter for the professional monitoring and remote control of MODULYS RM GP. The Net Vision network adaptor allows the UPS to be connected directly to the Ethernet network allowing secure management of the UPS over the network using a web browser, a TELNET interface or NMS application via SNMP. The protocols used for connection are independent of the platform and operating system, therefore Net Vision is extremely flexible and suitable for all systems. In addition to monitoring and control, the Net Vision interface is able to provide a high level of protection for servers powered by the UPS. In critical conditions, up to 250 devices powered by the UPS can be switched off in an orderly sequence whilst ensuring data integrity. The remote shutdown is provided by a client shutdown to be installed on all computers that require this automatic function. Some clients for Net Vision are native to certain operating systems, otherwise a universal shutdown client (JNC) can be used.



Multi-language capabilities

### 2.4.4 EMD (Environment Monitoring Device)

The EMD monitors temperature, humidity and other conditions in the room's environment and also offers 2 digital input connections for external dry contacts to monitor water, fire and smoke security alarms. All information is processed by MODULYS RM GP for a complete monitoring of external conditions and alarms. Easy connection to Net Vision card using standard CAT5 cables with straight through wiring.



### 2.4.5 EXTERNAL TEMPERATURE SENSOR

The temperature sensor can be used to monitor the battery temperature should the battery cabinet be provided by another supplier by Socomec (all battery cabinets provided by Socomec are fitted with the temperature sensor as standard). The sensor should be connected to the ADC-SL board, using the relative connector. MODULYS RM GP uses the temperature measured by this sensor to correctly set the battery charge profile.



## **3. REFERENCE STANDARDS AND DIRECTIVES**

### 3.1 OVERVIEW

The construction of the equipment and choice of materials and components comply with all laws, decrees, directives and standards currently in force. In particular, the equipment is fully compliant with all European Directives concerning CE marking.

### 2006/95/EC

Council Directive 2006/95/EC, dated 16 February 2007, on the reconciliation of legislation within Member States regarding electrical materials for use within specific voltage ranges.

### 2004/108/EC

On the approximation of the laws of the Member States relating to electromagnetic compatibility.

### 3.2 STANDARDS - TESTS, VERIFICATIONS AND CERTIFICATIONS

STANDARDS			
Safety	IEC 62040-1		
EMC	IEC 62040-2 (C2)		
Performance ⁽¹⁾	IEC 62040-3 (VFI-SS-111)		
Power module efficiency ⁽²⁾	IEC 62040-3	up to 96,5 %	
Power module MTBF ⁽³⁾	IEC 62380	1.000.000 h	
Degree of protection	IEC 60529	IP20	
Product certification	CE		

(1) EMC performances are tested and verified by CREI VEN.

(2) Power module efficiency is tested and verified by TÜV SÜD.

(3) Power Module MTBF is calculated and tested by SERMA ELECTRONICS.



ELITE UPS: a mark of efficiency

Socomec, as CEMEP UPS manufacturer member, has signed a Code of Conduct put forward by the Joint Research Centre of the European Commission (JRC), to ensure the protection of critical applications and processes ensuring 24/7 continuous high quality supply. The JRC commits to mitigating energy losses and gas emissions caused by UPS equipment, therefore maximising UPS efficiency.







# **MODULYS XM** 50 to 250 + 50 kW Redundant Modular UPS





Socomec Resource Center To download, brochures, catalogues and technical manuals



# **OBJECTIVES**

The purpose of these specifications is to provide the information required to prepare the system and installation site. The specifications are intended for:

- installation engineers.
- design engineers.
- engineering consultants.

For detailed information, see the installation and operating manual.



# **1. ARCHITECTURE**

## **1.1 RANGE AND FLEXIBILITY**

Modulys XM is a modular, scalable and redundant UPS system based on plug-in and hot-swap power modules.

The modularity enables power scalability by simply plugging one or more additional modules into the existing system (up to 6 modules per system).

The modularity also enables redundancy, which is an essential feature to ensure UPS system fault tolerance. The redundant configuration can be set from N+1 up to N+R.

## 1.1.1 FLEXIBLE RATED POWER

POWER MODULES						
Number of Power Modules	1	2	3	4	5	6
N+1 redundant System Power (kW)	50 + 0 ⁽¹⁾	50 + 50	100 + 50	150 + 50	200 + 50	250 + 50

(1) No Power redundancy

#### 1.1.2 FLEXIBLE SHORT-CIRCUIT PERFORMANCE

SYSTEM CONFIGURATIO	ONS						
	Standard	High Short-circuit					
System description	Short-circuit safety performance accord- ing to IEC/EN62040-1 requirements	<ul> <li>Extra-rugged system for enhanced short-circuit safety performance (beyond IEC/EN 62040-1 requirements)</li> <li>Ready for +1 extra Bypass Module (option) for higher Bypass short-circuit capability</li> </ul>					
Number of Bypass Modules	1	1 + 1 ⁽¹⁾					
Number of Power Modules	1 → 6	1 → 6					
(1) Extra Bypass							

See § 2.2.1.

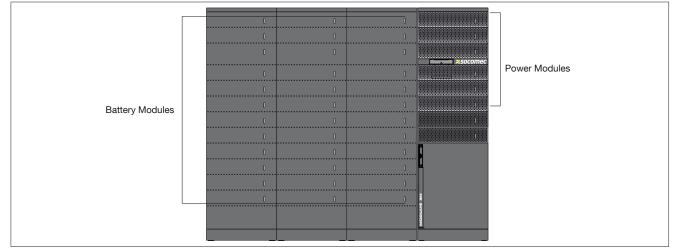
#### 1.1.3 FLEXIBLE CABLING

The standard solution and high short-circuit solution have bottom cabling configuration. As an option they can also accept top cabling and mixed top-bottom cabling.

#### 1.1.4 FLEXIBLE GROUNDING COMPATIBILITY

Compatible with any grounding system: TN-S, TN-C, TT, IT.




# **1.2 FLEXIBLE BACK-UP TIME**

Various extended back-up times are possible by using: (1) a modular battery cabinet; (2) a high-capacity battery cabinet. Each battery pack has an acid-proof container designed to prevent damage in the event of acid leakage. Each Power Module has a powerful embedded battery charger able to provide up to 20 A.

#### 1.2.1 MODULAR HOT-SWAP BATTERY CABINET - MEDIUM CAPACITY

The modular battery system is based on vertical and horizontal modularity thanks to independent battery strings connected in parallel, each one made up of hot-swap long life battery packs.

Each battery string has its own independent protection device and its own independent switch for fast and safe maintenance.



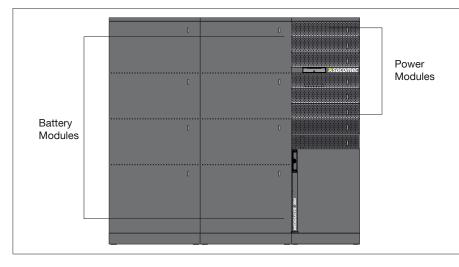
DIME	IMENSIONS AND WEIGHT																																
								Nu	umb	er (	of 9	Ah	Mc	dul	ar h	ot-s	swa	ıp b	atte	ry c	abi	nets	s 9 .	Ah	- m	ediı	um	cap	acit	Y			
							1												2											3			
		Number of battery strings																															
	1	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36							35 36																								
Height (mm)		1990																															
Depth (mm)		950																															
Width (mm)		810 1620 2430																															
Weight (kg)	384	384 508 632 756 880 1004 1128 1252 1376 1500 1624 1748 2132 2256 2380 2504 2628 2752 2876 3000 3124 3248 3372 3496 3880 4004 4128 4252 4376 4500 4624 4748 4872 4996 5120 5244						51205244																									

Vertical modularity using a modular battery cabinet with hot-swap battery boxes provides scalable power back-up with up to 12 battery strings per cabinet.

Horizontal modularity provides very high and scalable back-up.

A standard temperature sensor optimizes the battery recharging parameters according to the ambient operating temperature to extend battery life.




Number c	of Power M	odules				1	2	3	4	5	6					
N+1 redu Power (kV	ndant Syste V)	em				50 + 0 ⁽¹⁾	50 + 50	100 + 50	150 + 50	200 + 50	250 + 50					
	,		2		18	5,5	5,5									
			3	-	27	10,8	10,8									
			4	-	36	15,4	15,4	5,5								
			5	-	45	18,6	18,6	8,1								
			6		54	23,7	23,7	10,8	5,5							
	1		7	1	63	31	31	13,2	7,3							
			8	1	72	36	36	15,4	9,1	5,5						
			9	1	81	42	42	17,2	10,8	6,9						
			10		90	48	48	18,6	12,3	8,1	5,5					
			11		99	55	55	21	14	9,5	6,7					
			12		108	62	62	23,7	15,4	10,8	7,6					
		1	13		117	69	69	27,4	16,6	11,9	8,7					
			14		126	74	74	31	17,7	13,2	9,8					
sts		15	-	135	79	79	34	18,6	14,3	10,8						
abine			16		144	86	86	36								
Number of Modular battery cabinets		Number of strings	17		153	93	93	16,3	12,7							
oatte		of str	18	Cumultative Ah	162	99	99	42	23,7	17,2	13,6					
ular I	2	per o	19		ultativ	ultativ	171	104	104	45	26,2	17,9	14,5			
Modi		Mum	20	nmu	180	112	112	48	28,5	18,6	15,4					
r of l			21		189	119	119	51	31	19,7	16,1					
mbe			22		198	127	127	55	33	21	16,8					
NUI			23							207	133	133	59	35	22,4	17,5
			24		216	140	140	62	36	23,7	18,1					
			25		225	146	146	66	38	25,6	18,6					
			26		234	151	151	69	40	27,4	19,4					
			27		243	158	158	72	42	29,1	20,5					
			28		252	166	166	74	44	31	21,6					
			29		261	173	173	77	46	32	22,6					
	2		30		270	181	181	79	48	34	23,7					
	3		31		279	188	188	83	50	35	25,2					
			32		288	196	196	86	52	36	26,7					
			33		297	202	202	89	55	38	28,1					
			34		306	212	212	93	58	39	29,4					
			35		315	221	221	96	60	40	31					
			36		324	229	229	99	62	42	32					

(1) No Power redundancy



MODULYS XM 50 to 250 + 50 kW

#### 1.2.2 MODULAR BATTERY CABINET - HIGH CAPACITY



DIMENSIONS AND WEIGHT						
Number of Strings	0	1				
Height (mm) 1990						
Depth (mm)	89	90				
Width (mm)	81	10				
Weight (kg) 220 1792						

High-capacity modular battery cabinets are designed for long back-up times (BUT) with higher power.

A standard temperature sensor optimizes the battery recharging parameters according to the ambient operating temperature to extend battery life.

	MODULAR BATTERY CABINET BACK-UP TIMES IN MINUTES @75% OF RATED LOAD										
	Number of Power Modules						2	3	4	5	6
N+1 redundant System Power (kW)						50 + 0 ⁽¹⁾	50 + 50	100 + 50	150 + 50	200 + 50	250 + 50
lets	1	gs	1		92	49	49	19.8	0	0	0
cabin	2	strings	2	Ч	184	115	115	49	29.1	19.8	14.3
ttery	3	attery	3	Cumulative Ah	276	184	184	82	49	34	25.3
of ba	4	of b	4	alum	368	255	255	115	71	49	37
Number of battery cabinets	5	Number of battery	5	Ö	460	329	329	148	93	66	49
Nur	6	NZ	6		552	407	407	184	115	82	62

(1) No Power redundancy



# 2. SPECIFICATIONS

# 2.1 INSTALLATION PARAMETERS

DIMENSIONS AND WEIGHT						
Number of Power Modules	1	2	3	4	5	6
Height (mm)	1990					
Depth (mm)			89	90		
Width (mm)	600					
Weight (kg)	289	325	361	397	433	469

RATED CURRENT AND MAX CURRENT						
Number of Power Modules	1	2	3	4	5	6
N+1 redundant System Power (kW)	50 + 0 ⁽¹⁾	50 + 50	100 + 50	150 + 50	200 + 50	250 + 50
Rated rectifier input current (A) (EN 62040-1)	75	75	150	226	301	376
Maximum rectifier input current (A) (EN 62040-3)	90	180	270	360	450	450
Nominal Inverter output current (A)	72	72	144	217	289	361
Maximum bypass input current (A) (EN 62040-3)	398					
Maximum battery current (A)	114	228	342	456	570	684

(1) No Power redundancy

COOLING							
Number of Power Modules		1	2	3	4	5	6
N+1 redundant System Power (kW)	50 + 0 ⁽¹⁾	50 + 50	100 + 50	150 + 50	200 + 50	250 + 50	
Maximum air flow	(m3/h)	600	1200	1800	2400	3000	3600
	(VV)	2240	1920	3950	6080	8110	10680
Power Dissipation under nominal conditions ⁽²⁾	(kcal/h)	1920	1650	3390	5220	6970	9180
	(BTU/h)	7640	6550	13470	20740	27670	36440
	(VV)	2580	2140	4390	6910	9430	12060
Power Dissipation (maximum) under worst-case conditions ⁽³⁾	(kcal/h)	2220	1840	3780	5950	8110	10370
	(BTU/h)	8810	7310	14980	23580	32180	41160

(1) No Power redundancy

(2) nominal input voltage and rated output active power (PF=1)

(3) low input voltage, battery recharge and rated output active power (PF=1)

ACOUSTIC NOISE						
Number of Power Modules	1	2	3	4	5	6
N+1 redundant System Power (kW)	50 + 0 ⁽¹⁾	50 + 50	100 + 50	150 + 50	200 + 50	250 + 50
Acoustic noise at 1m (dBA) (2)	50	49	50	55	56	57

(1) No Power redundancy

(2) at 70% nominal load.

Socomec



# 2.2 ELECTRICAL CHARACTERISTICS

#### 2.2.1 ELECTRICAL CHARACTERISTICS INDEPENDENT OF THE NUMBER OF MODULES

ELECTRICAL CHARACTERISTICS - INPUT	
Rated mains supply voltage (V)	400 V 3-phase+N
Voltage tolerance at full load	340 V to 480 V (+20/-15%)
Voltage tolerance at derated load	up to 240 V @ 50% of nominal load (linear decrease)
Rated frequency (Hz)	40 - 70 Hz
Power factor	> 0.99(1)
Total harmonic input current distortion (THDi)	$\leq$ 3% (@: Pn, Resistive load, Mains THDv $\leq$ 1%)
Max inrush current at start-up	Power walk-in/Soft-start (selectable parameters)

(1) Pout  $\geq$  50% of nominal Power.

ELECTRICAL CHARACTERISTICS - BYPASS					
Bypass rated voltage (V)	Nominal output voltage $\pm 15\%$ ( $\pm 20\%$ if GENSET is used)				
Bypass rated frequency (Hz)	50/60				
Bypass frequency tolerance	$\pm 2\%$ selectable ( $\pm 8\%$ if GENSET is used)				
Bypass frequency variation speed	50/60 ±10%				
ELECTRICAL CHARACTERISTICS - INVERTER					
Rated output voltage (V)	(3ph + N) 400 380/400/415 selectable				
Output voltage tolerance (V)	±1%				
Rated output frequency (Hz)	50/60 (selectable)				
Output frequency tolerance	±0.05% (on battery mode)				
Load crest factor	≥ 2.7:1				
Total output voltage distortion (THDv)	$\leq$ 1% (Ph/Ph); $\leq$ 2% (Ph/N) (@: Pn, Resistive load)				
<b>ELECTRICAL CHARACTERISTICS - STORED ENER</b>	GY OPERATING MODE				
Number of battery blocks (VRLA)	From 18+18 to 24+24 ⁽¹⁾				
ELECTRICAL CHARACTERISTICS - EFFICIENCY					
Efficiency (on-line mode)	up to 96.5%				
Efficiency (eco-mode) up to 99.3%					

(1) Consult us

<b>ELECTRICAL CHARACTERISTICS</b>	- BYPASS OVERI	OAD AND SHORTCIRCU	IT
Solution type		Standard	High Short-circuit (*)
Number of Bypass Modules		1	1 + 1 ⁽¹⁾
Number of Power Modules		1	→ 6
	Nominal	362	362
	Continuous	398	398
Bypass overload (A)	10'	453	453
	1'	543	543
	1"	634	634
Bypass Max short-circuit current ITSM (A)		15000	28000
Bypass I ² t (A ² s)		1125000	3920000

(1) Extra Bypass Module (option) for higher Bypass short-circuit capability

ELECTRICAL CHARACTERISTICS - SYSTEM SHORTCIRCUIT SAFETY PERFORMANCE									
Solution type	Standard	High Short-circuit (*)							
Number of Bypass Modules	1	1 or 1 + 1 ⁽¹⁾							
Number of Power Modules	1 -	<b>→</b> 6							
Short-circuit current withstand (Icw)	10 kA	25 kA up to 50 kA ⁽²⁾							
Conditional short-circuit current (Icc)		65 kA							

(1) Extra Bypass Module (option) for higher Bypass short-circuit capability (2) option - contact us (*) High short-circuit solution:

- Extra-rugged system for enhanced short-circuit saferty performance (beyond IEC/EN 62040-1 requirements)

- Ready for +1 extra Bypass Module (option) for higher Bypass short-circuit capability

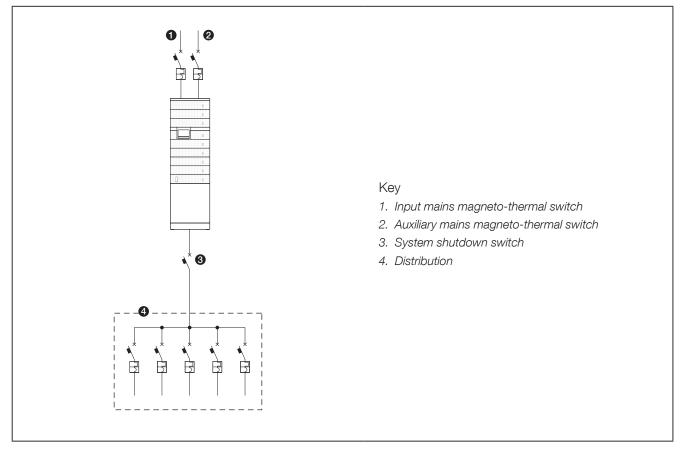


## 2.2.2 ELECTRICAL CHARACTERISTICS DEPENDENT ON THE NUMBER OF MODULES

ELECTRICAL CHARACTERISTICS - Inverter overload and short-circuit							
Number of Power Modules		1	2	3	4	5	6
N+1 redundant System Power (kW)		50 + 0 ⁽¹⁾	50 + 50	100 + 50	150 + 50	200 + 50	250 + 50
	10 min	62.5	125	187	250	312	312
Inverter overload (kW)(2)	5 min	66	132	198	264	330	330
1 min		75	150	225	300	375	375
Inverter short-circuit (A) 40		195	390	585	780	975	1170
lk1 = lk2 = lk3			324	486	648	810	972

(1) No Power redundancy

(2) Conditions: Initial Pout  $\leq$  80% Pn, Vin nominal


ELECTRICAL CHARACTERISTICS - Battery Charger Max Current							
Number of Power Modules	1	2	3	4	5	6	
N+1 redundant System Power (kW)	50 + 0 ⁽¹⁾	50 + 50	100 + 50	150 + 50	200 + 50	250 + 50	
Maximum Current (A) 20 40 60 80 100 120							

(1) No power redundancy



## 2.3 RECOMMENDED PROTECTION

#### 2.3.1 SYSTEM FROM 50 TO 250 + 50 kVA



The installation and system should comply with national plant regulations.

The electrical distribution panel should have a sectioning and protection system installed for input and auxiliary mains.

SYSTEM CABLES - MAX SECTION							
Number of Modu	ules	1 → 6					
Destifier terminals (mm ² )	Flexible	2 x 150					
Rectifier terminals (mm ² )	Rigid	2 x 150					
Durages terminals (mm ² )	Flexible	2 x 150					
Bypass terminals (mm ² )	Rigid	2 x 150					
Detter (terminale (mm ² )	Flexible	2 x 150					
Battery terminals (mm ² )	Rigid	2 x 150					
Output torminals (mm ² )	Flexible	2 x 150					
Output terminals (mm ² )	Rigid	2 x 150					

M10 terminals

Tightening torque 20 Nm

Maximum cross-section is determined by the size of the terminals.

As specified in EN 62040-3 Appendix 3 (Non-Linear Load Reference), in the event of three-phase non-linear loads connected downstream of the UPS, the neutral current on the load can be 1.5 - 2 times higher than the phase current. This should be taken into account when estimating the correct size of output and auxiliary neutral cables.



RECOMMENDED PROTECTION DEVICES - Rectifier							
Number of Modules	1	2	3	4	5	6	
N+1 redundant System Power (kW)		$50 + 0^{(1)}$	50 + 50	100 + 50	150 + 50	200 + 50	250 + 50
Oliversite lange state (A) Minimum		100	200	320	400	450	450
Circuit breaker with $Im \le 10 \times In (A)$ Maximum		450	450	450	450	450	450

(1) No Power redundancy

(2) Caution! Residual Current Detection (RCD) can only be used with a common input and auxiliary mains (configuration not recommended). It must be placed upstream of the connection between input mains and auxiliary mains. Use type B four-pole selective (S) residual current detectors. Load leakage currents are to be added to those generated by the UPS and short current peaks may occur during transitory phases (power failures and power returns). If loads with high leakage current are present, adjust the residual current protection. It is advisable in all cases to carry out a preliminary check on the ground current leakage with the UPS installed and operational with the definitive load, to prevent the RCD tripping.

A circuit breaker switch is recommended with magnetic intervention threshold  $\geq 10$  ln.

It is necessary to use a circuit breaker with  $Im \le 20 \times In$  (A) selective breaker if an optional external transformer is used. The minimum value depends on the size of the power cables in the installation, while the maximum value is limited by the UPS cabinet.

The system can accept the maximum value of protection, regardless of the number of modules installed, in order to enable future scalability, while the minimum value depends on the size of the power cables in the installation. A protection value of less than the maximum shall be used when the mains network structure cannot support the full power load, and shall be chosen between the minimum and maximum values (as per the table above) according to mains network design. Rectifier protection should be taken into account in the event of separate inputs; when the auxiliary mains and rectifier inputs are combined (common input), the general input protection rating should be higher than both (auxiliary mains or rectifier).

RECOMMENDED PROTECTION DEVICES - Auxiliary mains							
Number of Modules	1	2	3	4	5	6	
N+1 redundant System Power (kW)		$50 + 0^{(1)}$	50 + 50	100 + 50	150 + 50	200 + 50	250 + 50
Minimum		100	200	320	400	400	400
Circuit breaker with $Im \le 10 \times In (A)$ Maximum		450	450	450	450	450	450

(1) No Power redundancy

A circuit breaker switch is recommended with magnetic intervention threshold  $\geq 10$  ln.

It is necessary to use a circuit breaker with  $Im \le 20 \times In$  (A) selective breaker if an optional external transformer is used. The minimum value depends on the size of the power cables in the installation, while the maximum value is limited by the UPS cabinet. The conditional short circuit current (Icc) according to IEC 62040-1 is 65KA rms, provided that the UPS is protected by a MCCB with adequate breaking capability and current-limiting capability under short-circuit conditions. Contact us for detailed information.

<b>RECOMMENDED PROTECTION DEVICES - Upstream Residual Current Detection Circuit Breaker</b>							
Number of Modules	1	2	3	4	5	6	
N+1 redundant System Power (kW)	50 + 0 ⁽¹⁾ 50 + 50 100 + 50 150 + 50 200 + 50 250 + 50						
Residual Current Detection (A) Minimum				0	.5		

(1) No Power redundancy

An RCD is not necessary when the UPS is installed on a TN-S system. RCDs are not allowed on TN-C systems. If an RCD is required, a B type should be used.

Caution! Use four-pole selective (S) residual current detectors (RCDs). Load leakage currents are to be added to those generated by the UPS and short current peaks may occur during transitory phases (power failures and power returns). If loads with high leakage current are present, adjust the residual current protection. It is advisable in all cases to carry out a preliminary check on the ground current leakage with the UPS installed and operating with the definitive load, so as to prevent tripping of the RCD switch.

OUTPUT SELECTIVITY ON BATTERY MODE (AUX MAINS NOT PRESENT)							
Number of Modules	1	2	3	4	5	6	
N+1 redundant System Power (kW)		$50 + 0^{(1)}$	50 + 50	100 + 50	150 + 50	200 + 50	250 + 50
Circuit breaker with $Im \le 5 \times In (A)$ Maximum		25	50	80	100	125	125
Circuit breaker with $Im \le 10 \times In (A)$ Maximum		13	25	40	50	63	80

(1) No Power redundancy



# **3. REFERENCE STANDARDS AND DIRECTIVES**

## 3.1 OVERVIEW

The construction of the equipment and choice of materials and components comply with all laws, decrees, directives and standards currently in force. In particular, the equipment is fully compliant with all European Directives concerning CE marking.

#### 2006/95/EC

Council Directive 2006/95/EC, dated 16 February 2007, on the harmonization of the laws of Member States relating to electrical equipment designed for use within certain voltage limits.

#### 2004/108/EC

On the approximation of the laws of the Member States relating to electromagnetic compatibility.

## **3.2 STANDARDS**

STANDARD	
Safety	EN/IEC 62040-1 - AS 62040-1
EMC	EN/IEC 62040-2 - AS 62040-2
Product certification	IECEE CB Scheme
Performance	EN/IEC 62040-3 - AS 62040-3
Product marks	$CE - RCM^{(1)} - EAC^{(1)} - CMIM^{(1)} - UKCA^{(1)}$
Protective class	Protective Class I
Protection level	IP20

(1) Depends on the production site. Consult the data plate on the equipment



ELITE UPS: a mark of efficiency

Socomec, as CEMEP UPS manufacturer member, has signed a Code of Conduct put forward by the Joint Research Centre of the European Commission (JRC), to ensure the protection of critical applications and processes ensuring 24/7 continuous high quality supply. The JRC commits to mitigating energy losses and gas emissions caused by UPS equipment, therefore maximising UPS efficiency.





# **MODULYS XM** 100 to 600 + 50 kW Redundant Modular UPS





Socomec Resource Center To download, brochures, catalogues and technical manuals



# **OBJECTIVES**

The purpose of these specifications is to provide the information required to prepare the system and installation site. The specifications are intended for:

- installation engineers.
- design engineers.
- engineering consultants.

For detailed information, see the installation and operating manual.



# **1. ARCHITECTURE**

## **1.1 RANGE AND FLEXIBILITY**

Modulys XM is a modular, scalable and redundant UPS system based on plug-in and hot-swap power modules.

The modularity enables power scalability by simply plugging one or more additional modules into the existing system (up to 13 modules per system).

The modularity also enables redundancy, which is an essential feature to ensure UPS system fault tolerance. The redundant configuration can be set from N+1 up to N+R.

## 1.1.1 FLEXIBLE AND RATED POWER

POWER MODULES												
Number of Power Modules	2	3	4	5	6	7	8	9	10	11	12	13
N+1 redundant System Power (kW)	100+0(1)	100+50	150+50	200+50	250+50	300+50	350+50	400+50	450+50	500+50	550+50	600+50

(1) No Power redundancy

## 1.1.2 FLEXIBLE SHORT-CIRCUIT PERFORMANCE

SYSTEM CONFIGURATIONS									
	Standard	High Short-circuit							
System description	Short-circuit safety performance accord- ing to IEC/EN62040-1 requirements	<ul> <li>Extra-rugged system for enhanced short-circuit safety performance (beyond IEC/EN 62040-1 requirements)</li> <li>Ready for +1 extra Bypass Module (option) for higher Bypass short-circuit capability</li> </ul>							
Number of Bypass Modules	2	2 + 1 ⁽¹⁾							
Number of Power Modules	2 <b>→</b> 13	2 → 13							

(1) Extra Bypass

See § 2.2.1 for detailed information on high short circuit solution.

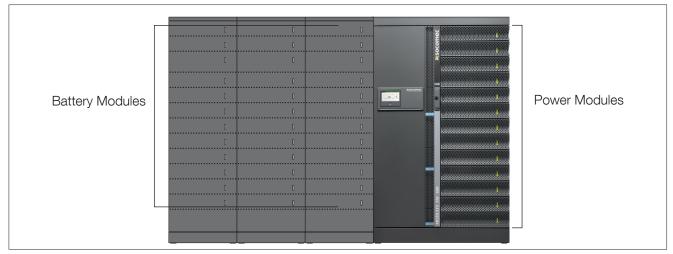
#### 1.1.3 FLEXIBLE CABLING

With the standard solution it is possible to meet every cabling configuration, without the need of any extra option: top cabling, bottom cabling and mixed top/bottom cabling. Decision can be taken even at last minute, on site. With the high short-circuit solution, two different configurations (top cabling and bottom / mixed top-bottom cabling) are provided.

#### 1.1.4 FLEXIBLE GROUNDING COMPATIBILITY

Compatible with any grounding system: TN-S, TN-C, TT, IT.




# **1.2 FLEXIBLE BACK-UP TIME**

Various extended back-up times are possible by using: (1) a modular battery cabinet; (2) a high-capacity battery cabinet. Each battery pack has an acid-proof container designed to prevent damage in the event of acid leakage. Each Power Module has a powerful embedded battery charger able to provide up to 20 A.

#### 1.2.1 MODULAR HOT-SWAP BATTERY CABINET - MEDIUM CAPACITY

The modular battery system is based on vertical and horizontal modularity thanks to independent battery strings connected in parallel, each one made up of hot-swap long life battery packs.

Each battery string has its own independent protection device and its own independent switch for fast and safe maintenance.



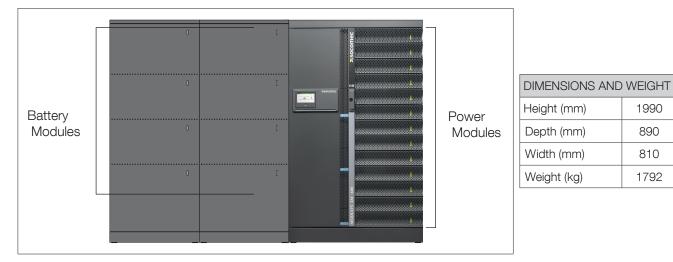
DIME	NS	510	NS	5 A	N	D V	VEI	GH	IT																											
									Nu	mbe	er o	f 9 /	Ah I	Мо	dula	ar ho	ot-s	swap	p ba	atter	ry c	abi	nets	s - r	nec	ium	n ca	pac	ity							
							1											1	2												3					
		Number of battery strings																																		
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	2 23	24	25	26	27	28	29	30	31	32	33	34	35 3	6
Height (mm)		1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 1990																																		
Depth (mm)																		ć	950																	
Width (mm)		810 1620 2430																																		
Weight (kg)	384	508	632	756	880	1004	1128	1252	1376	1500	1624	1748	2132	2256	62380	2504	2628	32752	22876	3000	3124	1324	83372	23490	63880	4004	4128	34252	4376	4500	4624	4748	4872	4996	512052	244

Vertical modularity using a modular battery cabinet with hot-swap battery boxes provides scalable power back-up with up to 12 battery strings per cabinet.

Horizontal modularity provides very high and scalable back-up.

A standard temperature sensor optimizes the battery recharging parameters according to the ambient operating temperature to extend battery life.




Num	nber	of P	ower	r Mo	dules	2	3	4	5	6	7	8	9	10	11	12	13
N+1 Pow			ant S	Syste	m	100+0(1)	100+50	150+50	200+50	250+50	300+50	350+50	400+50	450+50	500+50	550+50	600+50
			2		18	5,5											
			3		27	10,8											
			4		36	15,4	5,5										
			5		45	18,6	8,1										
			6		54	23,7	10,8	5,5									
	1		7		63	31	13,2	7,3									
			8		72	36	15,4	9,1	5,5								
			9		81	42	17,2	10,8	6,9								
			10		90	48	18,6	12,3	8,1	5,5							
			11		99	55	21	14	9,5	6,7							
			12		108	62	23,7	15,4	10,8	7,6	5,5						
			13		117	69	27,4	16,6	11,9	8,7	6,5						
			14		126	74	31	17,7	13,2	9,8	7,3	5,5					
			15		135	79	34	18,6	14,3	10,8	8,1	6,4					
	2		16		144	86	36	20,1	15,4	11,7	9,1	7,1	5,5				
		gs	17	ç	153	93	39	22	16,3	12,7	9,9	7,7	6,3				
Ś		strings	18	ve Al	162	99	42	23,7	17,2	13,6	10,8	8,6	6,9	5,5			
Power (kW)	2	er of	19	ultativ	171	104	45	26,2	17,9	14,5	11,5	9,3	7,5	6,2			
Pov		Number of	20	Cumultative Ah	180	112	48	28,5	18,6	15,4	12,3	10,1	8,1	6,8	5,5		
		Ŋ	21	0	189	119	51	31	19,7	16,1	13,2	10,8	8,9	7,3	6,1		
			22		198	127	55	33	21	16,8	14	11,4	9,5	7,8	6,7	5,5	
			23		207	133	59	35	22,4	17,5	14,7	12	10,2	8,5	7,1	6,1	
			24		216	140	62	36	23,7	18,1	15,4	12,8	10,8	9,1	7,6	6,6	5,5
			25		225	146	66	38	25,6	18,6	16	13,5	11,4	9,7	8,1	7	6
			26		234	151	69	40	27,4	19,4	16,6	14,2	11,9	10,2	8,7	7,4	6,5
			27		243	158	72	42	29,1	20,5	17,2	14,8	12,5	10,8	9,3	7,8	6,9
			28		252	166	74	44	31	21,6	17,7	15,4	13,2	11,3	9,8	8,4	7,3
			29		261	173	77	46	32	22,6	18,2	15,9	13,8	11,8	10,3	8,9	7,6
	3		30		270	181	79	48	34	23,7	18,6	16,5	14,3	12,3	10,8	9,4	8,1
	0		31		279	188	83	50	35	25,2	19,2	16,9	14,8	12,9	11,2	9,9	8,6
			32		288	196	86	52	36	26,7	20,1	17,4	15,4	13,4	11,7	10,3	9,1
			33		297	202	89	55	38	28,1	21	17,8	15,9	14	12,1	10,8	9,5
			34		306	212	93	58	39	29,4	22	18,2	16,3	14,4	12,7	11,2	9,9
			35		315	221	96	60	40	31	22,8	18,6	16,8	14,9	13,2	11,6	10,4
			36		324	229	99	62	42	32	23,7	19,1	17,2	15,4	13,6	12	10,8

(1) No Power redundancy



MODULYS XM 100 to 600 + 50 kW

#### 1.2.2 MODULAR BATTERY CABINET - HIGH CAPACITY



High-capacity modular battery cabinets are designed for long BUT (Back-up-times) also with higher power.

A standard temperature sensor optimizes the battery recharging parameters according to the ambient operating temperature to extend battery life.

						CABIN /INUTE	ET S @75 '	% OF F	RATED	LOAD							
	Nur	nber Mo	of F		r	2	3	4	5	6	7	8	9	10	11	12	13
N	+1 re F	edun Powe			tem	100+0(1)	100+50	150+50	200+50	250+50	300+50	350+50	400+50	450+50	500+50	550+50	600+50
lets	1	ß	1		90	49	19,8										
cabinets	2	strings	2	Ah	180	115	49	29,1	19,8	14,3							
	3	battery	3		270	184	82	49	34	25,3	19,8	15,4					
of battery	4	of	4	umulative	360	255	115	71	49	37	29,1	23,9	19,8	16,3	14,3		
Number	5	Numer	5	Ŭ	450	329	148	93	66	49	39	32	26,6	23,1	19,8	16,8	14,9
Nur	6	Ź	6		540	407	184	115	82	62	49	41	34	29,1	25,3	22,5	19,8

(1) No Power redundancy



# 2. SPECIFICATIONS

# 2.1 INSTALLATION PARAMETERS

DIMENSIONS AND W	/EIGH1	Г											
Number of Power Modules	1	2	3	4	5	6	7	8	9	10	11	12	13
Height (mm)							1990						
Depth (mm)							890						
Width (mm)							1200						
Weight (kg)	536	572	608	644	680	716	752	788	824	860	896	932	968

RATED CURRENT AND MA	X CUF	RENT										
Number of Power Modules	2	3	4	5	6	7	8	9	10	11	12	13
N+1 redundant System Power (kW)	100+0(1)	100+50	150+50	200+50	250+50	300+50	350+50	400+50	450+50	500+50	550+50	600+50
Rated rectifier input current (A) (EN 62040-1)	75	150	226	301	376	451	526	601	677	752	827	902
Maximum rectifier input current (A) (EN 62040-3)	180	270	360	450	540	630	720	810	900	990	1080	1080
Nominal Inverter output current (A)	72	144	217	289	361	433	505	577	650	722	794	866
Maximum bypass input current (A) (EN 62040-3)						95	56					
Maximum battery current (A)	228	342	456	570	684	798	912	1026	1140	1254	1368	1482
(1) No Power redundancy												·

COOLING													
Number of Power Modu	ules	2	3	4	5	6	7	8	9	10	11	12	13
N+1 redundant System Power (kW)		100+0(1)	100+50	150+50	200+50	250+50	300+50	350+50	400+50	450+50	500+50	550+50	600+50
Maximum air flow	(m3/h)	1200	1800	2400	3000	3600	4200	4800	5400	6000	6600	7200	7800
	(VV)	1920	3950	6080	8110	10680	12820	15340	17530	19720	21920	24710	26950
Power Dissipation under nominal conditions ⁽²⁾	(kcal/h)	1650	3390	5220	6970	9180	11020	13180	15070	16950	18840	21240	23170
	(BTU/h)	6550	13470	20740	27670	36440	43740	52340	59810	67280	74790	84310	91950
Power Dissipation	(VV)	2140	4390	6910	9430	12060	14470	16880	19730	22200	25220	27740	30920
(Maximum) under worst-case	(kcal/h)	1840	3780	5950	8110	10370	12450	14520	16970	19090	21690	23860	26590
conditions ⁽³⁾	(BTU/h)	7310	14980	23580	32180	41160	49380	57600	67330	75750	86060	94660	105510

(1) No Power redundancy

(2) nominal input voltage and rated output active power (PF=1)

(3) low input voltage, battery recharge and rated output active power (PF=1)

ACOUSTIC NOISE												
Number of Power Modules	2	3	4	5	6	7	8	9	10	11	12	13
N+1 redundant System Power (kW)	100+0(1)	100+50	150+50	200+50	250+50	300+50	350+50	400+50	450+50	500+50	550+50	600+50
Acoustic noise at 1m (dBA) (1)	53	50	55	56	57	58	59	60	61	62	63	64

(1) at 70% nominal load.



# 2.2 ELECTRICAL CHARACTERISTICS

#### 2.2.1 ELECTRICAL CHARACTERISTICS INDEPENDENT OF THE NUMBER OF MODULES

ELECTRICAL CHARACTERISTICS - INPUT	
Rated mains supply voltage (V)	400 V 3-phase+N
Voltage tolerance at full load	340 V to 480 V (+20/-15%)
Voltage tolerance at derated load	up to 240 V @ 50 % of nominal load (linear decrease)
Rated frequency (Hz)	40 - 70 Hz
Power factor	> 0.99 ⁽¹⁾
Total harmonic input current distortion (THDi)	$\leq$ 3% (@: Pn, Resistive load, Mains THDv $\leq$ 1 %)
Max inrush current at start-up	Power walk-in/Soft-start (selectable parameters)
(1) Doute EOO/ of norminal Douger	

(1) Pout  $\geq$  50% of nominal Power.

ELECTRICAL CHARACTERISTICS - BYPASS	
Bypass rated voltage (V)	Nominal output voltage ±15% (±20% if GENSET is used)
Bypass rated frequency (Hz)	50/60
Bypass frequency tolerance	±2% selectable (±8% if GENSET is used)
Bypass frequency variation speed	50/60 ±10%
<b>ELECTRICAL CHARACTERISTICS - INVERTER</b>	
Rated output voltage (V)	(3ph + N) 400 380/400/415 selectable
Output voltage tolerance (V)	±1%
Rated output frequency (Hz)	50/60 (selectable)
Output frequency tolerance	±0.05 % (on battery mode)
Load crest factor	≥ 2.7:1
Total output voltage distortion (THDv)	$\leq$ 1% (Ph/Ph); $\leq$ 2% (Ph/N) (@: Pn, Resistive load)
<b>ELECTRICAL CHARACTERISTICS - STORED E</b>	ENERGY OPERATING MODE
Number of battery blocks (VRLA)	From 18+18 to 24+24 (1)

(1) Consult us

ELECTRICAL CHARACTERISTICS	S - EFFICIENCY		
Efficiency (on-line mode)		up 1	:0 96.5 %
Efficiency (eco-mode)		up t	to 99.3 %
ELECTRICAL CHARACTERISTICS	S - BYPASS OVERL	OAD AND SHORTCIRC	UIT
Solution type		Standard	High Short-circuit (*)
Number of Bypass Modules		2	2 or 2 + 1 ⁽¹⁾
Number of Power Modules			2 → 13
	Nominal	362	362
	Continuous	398	398
Bypass overload (A)	10'	453	453
	1'	543	543
	1"	634	634
Bypass Maximum short-circuit current IT	SM (A)	28000	40000
Bypass I ² t (A ² s)		3920000	8000000

(1) Extra Bypass Module (option) for higher Bypass short-circuit capability

<b>ELECTRICAL CHARACTERISTICS - SYSTEM SHOR</b>	TCIRCUIT SAFETY PERFO	RMANCE
Solution type	Standard	High Short-circuit (*)
Number of Bypass Modules	2	2 or 2 + 1 ⁽¹⁾
Number of Power Modules	2 →	• 13
Short-circuit current withstand (Icw)	20 kA	35 kA up to 65 kA ⁽²⁾

(1) Extra Bypass Module (option) for higher Bypass short-circuit capability (2) option - contact us

(*) High short-circuit solution:

- Extra-rugged system for enhanced short-circuit saferty performance (beyond IEC/EN 62040-1 requirements)

- Ready for +1 extra Bypass Module (option) for higher Bypass short-circuit capability

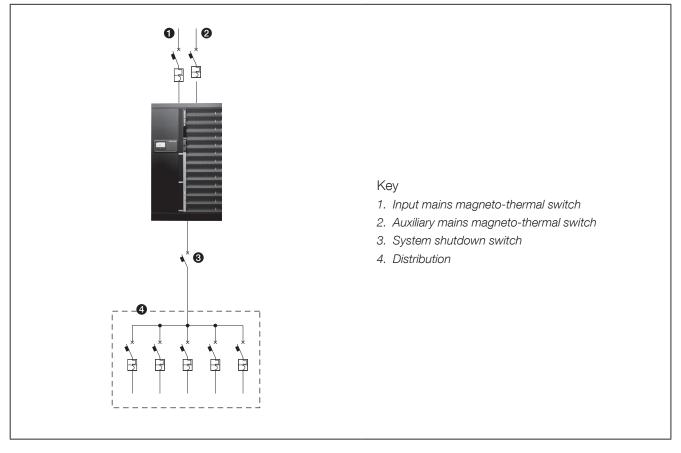


## 2.2.2 ELECTRICAL CHARACTERISTICS DEPENDENT ON THE NUMBER OF MODULES

ELECTRICAL CH		ISTICS	- Inve	rter ov	erload	and s	hort-ci	ircuit					
Number of Power Mc	odules	2	3	4	5	6	7	8	9	10	11	12	13
N+1 redundant Syste Power (kW)	m	100+0(1)	100+50	150+50	200+50	250+50	300+50	350+50	400+50	450+50	500+50	550+50	600+50
	10 min	125	187,5	250	312,5	375	437,5	500	562,5	625	687,5	750	750
Inverter overload (kW) ⁽²⁾	5 min	132	198	264	330	396	462	528	594	660	726	792	792
	1 min	150	225	300	375	450	525	600	675	750	825	900	900
Inverter short-circuit	40 ms	390	585	780	975	1170	1365	1560	1755	1950	2145	2340	2535
(A) lk1 = lk2 = lk3	40 to 100 ms	324	486	648	810	972	1134	1296	1458	1620	1782	1944	2106

(1) No Power redundancy

(2) Conditions: Initial Pout ≤ 80% Pn, Vin nominal


ELECTRICAL CHARACTERISTICS - Battery Charger Max Current												
Number of Power Modules	2	3	4	5	6	7	8	9	10	11	12	13
N+1 redundant System Power (kW)	100+0(1)	100+50	150+50	200+50	250+50	300+50	350+50	400+50	450+50	500+50	550+50	600+50
Maximum Current (A)	40	60	80	100	120	140	160	180	200	220	240	260

(1) No power redundancy



## 2.3 RECOMMENDED PROTECTION

#### 2.3.1 SYSTEM FROM 50 TO 600 + 50 kVA



The installation and system should comply with national plant regulations.

The electrical distribution panel should have a sectioning and protection system installed for input and auxiliary mains.

SYSTEM CABLES - MAX SECTION								
Number of Mode	ules	1 → 13						
Destifier terminals (mm ² )	Flexible	3 x 240						
Rectifier terminals (mm ² )	Rigid	3 x 240						
Durance toursele (com ² )	Flexible	3 x 240						
Bypass terminals (mm ² )	Rigid	3 x 240						
Patton (torminala (mm ² )	Flexible	3 x 240						
Battery terminals (mm ² )	Rigid	3 x 240						
Quitaut torminala (mm ² )	Flexible	3 x 240						
Output terminals (mm ² )	Rigid	3 x 240						

M10 terminals for In, Aux and Out; M12 for battery connections

#### Tightening torque 20Nm

Maximum cross-section is determined by the size of the terminals.

As specified in EN 62040-3 Appendix 3 (Non-Linear Load Reference), in the event of three-phase non-linear loads connected downstream of the UPS, the neutral current on the load can be 1.5 - 2 times higher than the phase current. This should be taken into account when estimating the correct size of output and auxiliary neutral cables.



#### **RECOMMENDED PROTECTION DEVICES - Rectifier**

Number of Modules		2	3	4	5	6	7	8	9	10	11	12	13
N+1 redundant System Power	(kW)	100+0(1)	100+50	150+50	200+50	250+50	300+50	350+50	400+50	450+50	500+50	550+50	600+50
$C_{\mu\nu}$ $C$	Min	200	320	400	630	630	630	800	1000	1000	1000	1250	1250
C Curve circuit breaker (A)	Max	1250	1250	1250	1250	1250	1250	1250	1250	1250	1250	1250	1250

(1) No Power redundancy

(2) Caution! Residual Current Detection (RCD) can only be used with a common input and auxiliary mains (configuration not recommended). It must be placed upstream of the connection between input mains and auxiliary mains. Use type B four-pole selective (S) residual current detectors. Load leakage currents are to be added to those generated by the UPS and during transitory phases (power failures and power returns) short current peaks may occur. If loads with high leakage current are present, adjust the residual current protection. It is advisable in all cases to carry out a preliminary check on the earth current leakage with the UPS installed and operational with the definitive load, to prevent the RCD tipping over.

A circuit breaker switch is recommended with magnetic intervention threshold  $\geq 10$  ln.

It is necessary to use a circuit breaker with  $Im \le 20 \times In$  (A) selective breaker if an optional external transformer is used. The min value depends on the size of the power cables in the installation, while the max value is limited by the UPS cabinet.

The system can accept the max. value of protection, whatever the number of modules installed, in order to allow future scalability, while the min. value depends on the size of the power cables in the installation. A value of protection less then Max shall be used when the mains network structure cannot support the full power load, and shall be chosen between max. and min. values (as per the table above) according to mains network design.

Rectifier protection should be taken into account in the event of separate inputs; when the auxiliary mains and rectifier inputs are combined (common input), the general input protection rating should be higher than both (auxiliary mains or rectifier).

RECOMMENDED PROTECTION DEVICES - Auxiliary mains													
Number of Modules		2	3	4	5	6	7	8	9	10	11	12	13
N+1 redundant System Power	(kW)	100+0(1)	100+50	150+50	200+50	250+50	300+50	350+50	400+50	450+50	500+50	550+50	600+50
C Currie aireuit breakar (A)	Min	200	320	400	630	630	630	800	1000	1000	1000	1000	1000
C Curve circuit breaker (A)	Max	1250	1250	1250	1250	1250	1250	1250	1250	1250	1250	1250	1250

(1) No Power redundancy

A circuit breaker switch is recommended with magnetic intervention threshold  $\geq 10$  ln.

It is necessary to use a circuit breaker with  $Im \le 20 \times In$  (A) selective breaker if an optional external transformer is used. The minimum value depends on the size of the power cables in the installation, while the maximum value is limited by the UPS cabinet.

The conditional short circuit current (lcc) according to IEC 62040-1 is 65KA rms, provided that the UPS is protected by a MCCB with adequate breaking capability and current-limiting capability under short-circuit conditions. Contact us for detailed information.

RECOMMENDED PROTECTION DEVICES - Upstream Residual Current Detection Circuit Breaker													
Number of Modu	ules	2	3	4	5	6	7	8	9	10	11	12	13
N+1 redundant System Po	ower (kW)	100+0(1)	100+50	150+50	200+50	250+50	300+50	350+50	400+50	450+50	500+50	550+50	600+50
Differential input (A)	Min												

(1) No Power redundancy

An RCD is not necessary when the UPS is installed on a TN-S system. RCDs are not allowed on TN-C systems. If an RCD is required, a B type should be used.

Caution! Use four-pole selective (S) residual current detectors (RCDs). Load leakage currents are to be added to those generated by the UPS and short current peaks may occur during transitory phases (power failures and power returns). If loads with high leakage current are present, adjust the residual current protection. It is advisable in all cases to carry out a preliminary check on the ground current leakage with the UPS installed and operating with the definitive load, so as to prevent the tripping of the RCD switch.

OUTPUT SELECTIVITY ON BATTERY MODE (AUX MAINS NOT PRESENT)													
Number of Modules		2	3	4	5	6	7	8	9	10	11	12	13
N+1 redundant System Power (	kW)	100+0(1)	100+50	150+50	200+50	250+50	300+50	350+50	400+50	450+50	500+50	550+50	600+50
Circuit breaker with $Im \le 5 \times In$ (A)	Max	50	80	100	125	125	200	200	250	250	250	250	250
Circuit breaker with $Im \le 10 \times In (A)$	Max	25	40	50	63	80	100	100	125	125	160	160	160

(1) No Power redundancy



# 3. REFERENCE STANDARDS AND DIRECTIVES

## **3.1 OVERVIEW**

The construction of the equipment and choice of materials and components comply with all laws, decrees, directives and standards currently in force. In particular, the equipment is fully compliant with all European Directives concerning CE marking.

#### 2006/95/EC

Council Directive 2006/95/EC, dated 16 February 2007, on the harmonization of the laws of Member States relating to electrical equipment designed for use within certain voltage limits..

#### 2004/108/EC

On the approximation of the laws of the Member States relating to electromagnetic compatibility.

## **3.2 STANDARDS**

STANDARD	
Safety	EN/IEC 62040-1 - AS 62040-1
EMC	EN/IEC 62040-2 - AS 62040-2
Product certification	IECEE CB Scheme
Performance	EN/IEC 62040-3 - AS 62040-3
Product marks	$CE - RCM^{(1)} - EAC^{(1)} - CMIM^{(1)} - UKCA^{(1)}$
Protective class	Protective Class I
Protection level	IP20

(1) Depends on the production site. Consult the data plate on the equipment



ELITE UPS: a mark of efficiency

Socomec, as CEMEP UPS manufacturer member, has signed a Code of Conduct put forward by the Joint Research Centre of the European Commission (JRC), to ensure the protection of critical applications and processes ensuring 24/7 continuous high quality supply. The JRC commits to mitigating energy losses and gas emissions caused by UPS equipment, therefore maximising UPS efficiency.





# **MODULYS XL** Ultimate modular UPS

200 kW to 4.8 MW







Socomec Resource Center To download, brochures, catalogues and technical manuals



# **OBJECTIVES**

The aim of these specifications is to provide the information required to prepare the system and installation site. The specifications are intended for:

- Installation engineers.
- Design engineers.
- Engineering consultants.

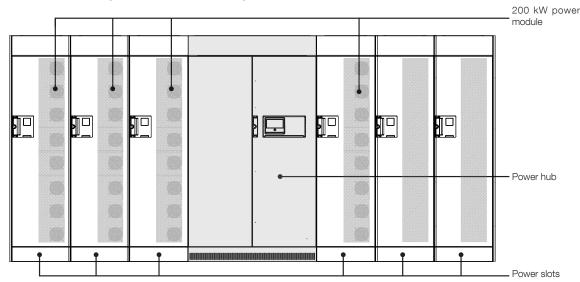
# **INSTALLATION REQUIREMENTS AND PROTECTION**

Connection to the mains power supply and to the load(s) must be made using cables of suitable size, in accordance with current standards. If not already present, an electrical control station which can isolate the network upstream of the UPS must be installed. This electrical control station must be equipped with a protection (or two, if there is a separate bypass line) of an appropriate rating for the power draw at full load.

For detailed information, see the installation and operating manual.



# **1. ARCHITECTURE**


# 1.1 RANGE

MODULYS XL is a modular UPS system designed to provide high performance and power scalability.

Power scalability can be by adding power blocks of 200 kW (Power module) to extend the system up to 1200 kW or less, according to the maximum power requirement. Systems can be parallelised to increase the rated power up to 4,8 MW

As the system has been designed to allow the power module to be hot-swappable, the load can be fully protected by on-line double conversion during system extension or maintenance.

Manufactured in Europe, MODULYS XL is a modular system including an individual Socomec switching system for each power block enabling easy and safe coupling and disconnection.



#### Power HUB for the UPS Unit

- All input(s) output and battery connections to the UPS unit.
- Full rated centralized static switch on bypass line
- Remote communication interfaces
- User interface (HMI)
- 63A-3Ph plug for advanced maintenance services

Power SLOT for Power MODULE plug-in

- built-in bus bars for interconnection together with others Power SLOTs and to the Power HUB
- Preconnected communication bus
- Power MODULE rated for 200 kVA/kW permanent operating
- Single and full rated Rectifier Inverter & Battery charger
- Double conversion's side bypass device
- Selective disconnection at input and output stages for complete isolation (contactors and fuses)
- Local battery disconnection switch to isolate the module from the Battery bus
- Plug-in system (power and control) to connect on the Unit

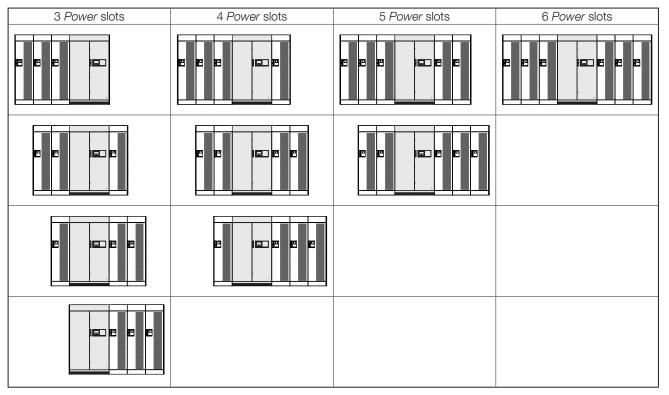
#### **1.2 RATED POWER**

The rated power is related to the number of installed Power modules. The number of Power slots installed at the beginning defines maximum power that can be reached through Hot-scalability at each UPS UNIT level.

RATED POWER PER UPS UNIT																		
Number of Power Slots		З			2	1				5						6		
Number of power <i>module</i> (200 kW)	1	2	3	1	2	3	4	1	2	З	4	5	1	2	3	4	5	6
Power (kW) N configuration at 40°C	200	400	600	200	400	600	800	200	400	600	800	1000	200	400	600	800	1000	1200
Power (kW) N+1 configuration at 40°C		200	400		200	400	600		200	400	600	800		200	400	600	800	1000
Parallel units	up to 4 units (200-1200kVA/kW) in parallel																	



# **1.3 THE BRICKS**

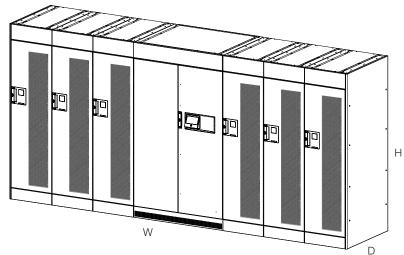

MODULYS XL is built on a flexible brick concept. The UPS can be built by associating the bricks according to the requirements.

- 1. Select the Power HUB
- 2. Specify the number of Power slots according to the maximum power and the redundancy level which is required to protect the load at the final stage.
- 3. Specify the number of Power modules needed to protect the load at the initial stage; Power Modules are plugged into installed Power Slots. Unused Power slots are ready for later Power module hot plug-in, when needed.

DIMENSIONS	SAND WEIGHT					
Section	View	Rated power (kVA/kW)	Width [W] (mm)	Depth [D] (mm)	Height [H] (mm)	Weight (kg)
Power HUB	H	Up to 1200	1200	975	2120	750
Power slots	H	200	550	975	2120	110
Power module		200	500	950	1940	460



#### THE DESIGN ALLOW FLEXIBLE POWER SLOT NUMBER AND POSITION- UP TO 3 ON EACH SIDE




The UPS Unit can be defined as per required.

Slots installed at initial stage are ready to hot plug Power modules.

Power modules can be plugged into power slot without any constrain of position or number.

#### UNIT DIMENSIONS

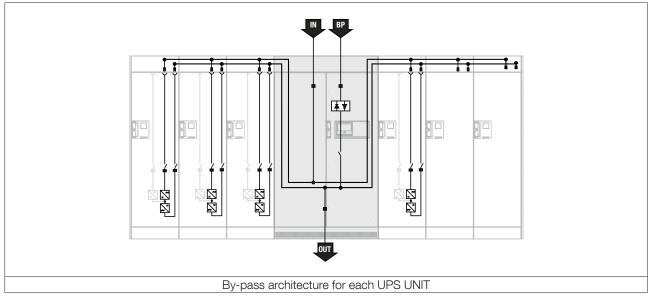


	IENSIONS										
Number of	Power slots		3	4	5	6					
Maximum p	oower (kW)		600	800	1000	1200					
	Width [W] (1)	mm	2890	3440	3990	4540					
UNIT size	Depth [D]	mm		97	75						
	Height [H]	mm		21	20						
Weight		kg	2500	3100	3650	4250					
Single unit	Clearances	mm	No rear or lateral clearance,Top = 400 mm								
Access for	maintenance	mm	Front c	only ( $\geq$ 1200 mm free s	space for Module extr	raction)					

(1) Width is including left and right side panels.



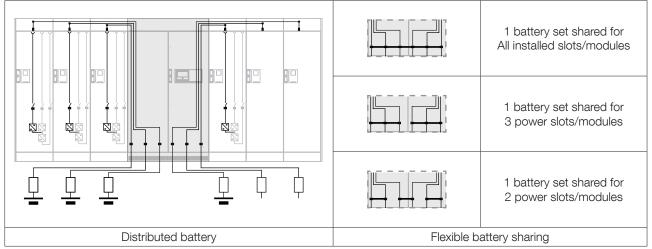
MODULYS XL 200 kW to 4.8 MV


# **1.4 SYSTEM ARCHITECTURES**

MODULYS XL's design simplifies the connection to the upstream and downstream switchboards resulting in a simpler, faster and safer unit than a traditional UPS solution. All connections to the electrical infrastructure are performed on the system, without any modification to the site installation when power module(s) are added.

For full adaptation to all types of infrastructure and environments, MODULYS XL can be:

- set with common or separated inputs.
- top and bottom entry UPS connection
- energy storage flexibility (Distributed, Shared or Mixed).


#### 1.4.1 BYPASS ARCHITECTURE



The above drawings show simplified diagrams for separated inputs (Rectifier / Bypass).

#### **1.4.2 BATTERY CONNECTION**

Modulys XL provides full flexibility in regards to the batteries connection. This permits to address all different needs in term of availability, cost and footprint optimization.



The battery switch in the module allows to connect / disconnect it from the battery bus without the need to remove the entire battery set (ie Shared battery).

For a full hot scalability during a battery set extension, 2 solutions are available with Modulys XL :

- The future battery protection can be directly prewired to the Power HUB
- or
- An additionnal power slot can be installed to provide a full front access to the future battery set.

For parallel systems, each system can have its own battery coupling design.



# 2. STANDARD AND OPTIONAL EQUIPMENTS

## 2.1 FLEXIBLE UPS UNIT ARCHITECTURE

- Hot-scalable or Cold-scalable power.
- Adjustable redundancy level.
- Common or separated rectifier and bypass mains.
- Compatible with different energy storage technologies (e.g.VLRA, Li-Ion, Ni-Cd...).

## 2.2 STANDARD ELECTRICAL FEATURES.

- Separated inputs (rectifier, bypass).
- Top or bottom cable entry.
- Backfeed protection: detection circuit.
- Full redundant cooling system.
- Distributed batteries (1 per module).
- Battery room temperature sensor.

- Module heat run test.
- Full system heat run test.
- 63 A three-phase plug for extracted module testing.
- External switches position management
- Firmware and parameter auto-alignment
- Energy Saver mode

#### 2.3 ELECTRICAL OPTIONS.

- Input, output and maintenance bypass switches.
- 3-wires bypass and output distribution kit.
- PEN kit for TN-C grounding system.
- Shared batteries (1, 2 or 3 per unit).
- Reinforced battery charger.
- Battery tripping kit.

- Additional battery temperature sensors.
- Redundant electronic power supplies.
- BCR (Battery Capacity Re-injection).
- Smart Conversion Mode.
- ACS synchronisation system.
- Cold start.

#### 2.4 STANDARD COMMUNICATION FEATURES.

- User-friendly 7' touch-screen multilingual color graphic display (Power Hub).
- Tricolour display with number for Power Module status (Power Slot)
- 4 Com-Slots for communication options.
- USB port to download UPS report and log file.
- Ethernet port for service purpose.

#### 2.5 COMMUNICATION OPTIONS.

- Dry-contact interface (configurable Volt-free contacts).
- MODBUS RTU RS485 or TCP
- PROFIBUS / PROFINET gateway.
- BACnet/IP interface.
- NET VISION: professional WEB/SNMP Ethernet interface for secure UPS monitoring and remote automatic shutdown.
- NET VISION EMD: Environment Temperature and Humidity sensor with 2 inputs
- Remote View Pro supervision software.
- IoT Gateway for Socomec cloud services and SoLive mobile app.
- Remote touch-screen panel.

#### 2.6 REMOTE MONITORING AND CLOUD SERVICES.

- SoLink: Socomec 24/7 Remote Monitoring Service connecting your installation to the nearest Socomec Service Centre.
- SoLive: Mobile app taking the surveillance of all your UPS systems into your smartphone.



# **3. SPECIFICATIONS**

# **3.1 INSTALLATION PARAMETERS**

SYSTEM INSTALLATION													
Unit Rated power (kVA)		200	400	600	800	1000	1200	200	400	600	800	1000	
System configuration				N config	guratior	1		N+1 redundant configuration					
Number of <i>Power mo</i> dule (200 k	VV)	1	2	3	4	5	6	1+1	2+1	3+1	4+1	5+1	
Active power	(kW)	200	400	600	800	1000	1200	200	400	600	800	1000	
Rated rectifier input current	(A)	302	604	906	1208	1510	1812	302	604	906	1208	1510	
Maximum rectifier input current	(A)	340	680	1020	1360	1700	2040	680	1020	1360	1700	2040	
Rated input bypass current	(A)	289	577	866	1155	1443	1732	289	577	866	1155	1443	
Maximum rated bypass current	(A)		-	-			1732			_			
Rated output current @ 400 V	(A)	289	577	866	1155	1443	1732	289	577	866	1155	1443	
Maximum air flow	(m ³ /h)	2100	4200	6300	8400	10500	12600	4200	6300	8400	10500	12600	
	(kW)	8.5	17.0	25.5	34.0	42.5	51.0	8.5	17.0	25.5	34.0	42.5	
Power dissipation in nominal conditions ⁽¹⁾	(kcal/h) ×1000	7.3	14.6	21.9	29.2	36.5	43.8	7.3	14.6	21.9	29.2	36.5	
	BTU/h ×1000	29	58	87	116	145	174	29	58	87	116	145	
	(kW)	10.4	20.8	31.2	41.6	52.1	62.5	10.2	21.2	32.6	44.3	55.7	
Power dissipation (max) in the worst conditions ⁽²⁾	(kcal/h) ×1000	8.9	17.9	26.8	35.8	44.8	53.7	8.8	18.2	28	38.1	47.9	
	BTU/h ×1000	35.5	71	106	142	178	213	34.8	72.3	111	151	190	

# **3.2 ELECTRICAL CHARACTERISTICS**

Rated mains supply voltage	400 V 3ph						
Voltage tolerance	200 V to 480 V ⁽⁴⁾						
Rated frequency	50/60 Hz						
Frequency tolerance	45 to 65 Hz						
Power factor	> 0.99 ⁽⁵⁾						
Total harmonic distortion (THDi)	< 2.5% ⁽⁵⁾						
Max inrush current at start-up	< In (no overcurrent)						
Soft start (Power walk-in)	Configurable from 1A/s to 1000A/s per module						

ELECTRICAL CHARACTERISTICS - BATTERY				
Battery Type	VRLA – Lithium Ion - Ni-Cd			
Number of poles	2 wires (+/-)			
Battery Voltage range	Up to 700V			
Lithium Ion communication with UPS	Basic (Dry contact) / Smart (Modbus)			
Min/Max number of VRLA battery cells with load PF=1	258			
Min/Max number of VRLA battery cells with load PF $\leq 0.9$	234			
Min/Max number of VRLA battery cells with load PF $\leq 0.8$	222			
Battery AC ripple current	< 3% C10			
Battery AC ripple voltage	< 1% on the battery bloc			
Battery charger	40A per module (standard) 120A per module (optional)			



ELECTRICAL CHARACTERISTICS - STATIC BYPASS				
Bypass rated voltage		Nominal output voltage		
Bypass voltage tolerance		$\pm 15\%$ (settable)		
Bypass rated frequency		50/60 Hz (selectable)		
Bypass frequency tolerance		$\pm 2\%$ (from $\pm 1\%$ to $\pm 5\%$ (operation with generator unit))		
Bypass frequency variation speed follow up		1 Hz/s settable from 1 to 3 Hz/s		
Semiconductors l²t (A characteristics ls/c (A		Up to 10 400 000		
		Up to 45 500		
60 min		110% of the installed apparent power		
Overload tolerated on the bypass mains	10 min	125% of the installed apparent power		
Short-circuit withstanding (Icw)	kA	100 (symmetrical) without fuses		

ELECTRICAL CHARACTERISTICS - INVERTER							
Number of installed Power module (200 kVA/kW)		1	2	3	4	5	6
Rated output voltage (selectable)		400 V 3ph					
Output voltage tolerance		static	load <1%	, dynamic	oad VFI-S	S-111 com	npliant
Rated output frequency		50/60 Hz (selectable)					
Autonomous frequency tolerance		±0.01 Hz on mains power failure					
Harmonic voltage distortion			ThdU	≤ 1 % with	rated line	ar load	
	1h	220 kW	440 kW	660 kW	880 kW	1100 kW	1320 kW
Overload tolerated ⁽⁶⁾ by the inverter	10 min	250 kW	500 kW	750 kW	1000 kW	1250 kW	1500 kW
1 m		300 kW	600 kW	900 kW	1200 kW	1500 kW	1800 kW

ENVIRONMENT CHARACTERISTICS				
UPS storage conditions	-20 to +70 °C under ≤70% condensation free RH			
UPS start-up and working conditions	0 to +50 °C under ≤95% condensation free RH			
Air inlet	Front			
Air outlet	Тор			
Operating relative humidity (non-condensing)	≤ 95%			
Power module efficiency in double conversion (VFI)	up to 97%			
Acoustic noise	< 75 dBA			
Maximum altitude without derating	1000 m (3,300 ft)			
Degree of protection	IP 20 (IP30 top grids)			
Colour	RAL 7016			

1. Nominal input current and rated output active power (PF1). Losses for N+1 configuration is considering the worst case (Redundancy lost).

2. Dissipation that may be generated temporary, considering: Low input voltage, battery recharge and rated output active power (PF1).

- 3. IGBT rectifier.
- 4. Conditions apply.
- 5. At full load and rated input voltage (THDV < 1%).
- 6. The tolerated output overload corresponds to the inverter capability only. The output overload performance is incremented by the static bypass capability (when available)



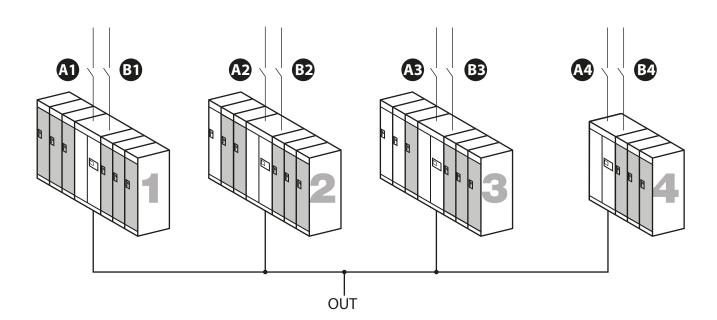
# **3.3 RECOMMENDED SYSTEM PROTECTIONS**

#### 3.3.1 INPUT PROTECTIONS FOR SINGLE UNIT CONFIGURATION

	Configuration N		Configuration N+1		
Max power (kVA)	Number of <i>Power</i> slots Protection rating (A)		Number of <i>Power</i> slots	Protection rating (A)	
400	2	800	3	1250	
600	3	1250	4	1600	
800	4	1600	5	2000	
1000	5	2000	6	2500*	
1200	6	2500*			

* Maximum input current can be configured to fit with a 2000A circuit breaker (please consult us)

RECOMMENDED PROTECTION DEVICES – BYPASS INPUT MAIN ⁽⁷⁾					
	Configu	ration N	Configura	ation N+1	
Max power (kVA)	Number of <i>Power</i> slots Protection rating (A)		Number of <i>Power</i> slots	Protection rating (A)	
400	2	800	3	800	
600	3	1000	4	1000	
800	4	1250	5	1250	
1000	5	1600	6	1600	
1200	6	2000			


All recommended protection are considering the number of Power slots planned to be installed, at initial stage or later.

#### 3.3.2 INPUT PROTECTIONS FOR PARALLEL UNITS CONFIGURATION

Bx = Max B1 - B2 - B3 - B4

For parallel Units, protection devices upstream to each UPS UNIT are recommended as per the following guidelines: Rectifiers: Each UNIT's input can be protected according to the number of installed Power Slots - Refer to the recommended protection for a Single Unit.

Bypass: Each UNIT's input feeders protection and cables section shall be properly sized according to the UNIT having the highest number of installed Power Slots - Refer to the recommended protection for a Single Unit.





#### 3.3.3 OUTPUT PROTECTIONS

RECOMMENDED PROTECTION DEVICES – OUTPUT ⁽⁸⁾							
Number of Power module (200 kV/	1	2	3	4	5	6	
Inverter short-circuit current ⁽⁹⁾ (A)	0 to 20 ms	820A	1640A	2460A	3280A	4100A	4920A
(when AUX MAINS is not present)	20 to 100 ms	650A	1300A	1950A	2600A	3250A	3900A
Output protection rating (A)		≤ 80	≤ 160	≤ 200	≤ 250	≤ 400	≤ 400

On parallel system, selectivity can be calculated by using short-circuit current of a Power module X number of Power modules

#### 3.3.4 CABLES CONNECTION

AC CABLES CONNECTION – POWER HUB (10)					
	Maximum number of cable according the size (Others on demand)				
Rectifier terminals 3PH (11)	6 x 240 mm ² per pole	5 x 300 mm² per pole	4 x 400 mm ² per pole		
Bypass terminals 3PH+N (12)	6 x 240 mm ² per pole	5 x 300 mm² per pole	4 x 400 mm ² per pole		
Output terminals 3PH+N (12)	6 x 240 mm ² per pole	5 x 300 mm² per pole	4 x 400 mm ² per pole		

DC CABLES CONNECTION – POWER HUB (10)					
Cables entry	Battery connection	Max section per pole			
	Distributed	Up to 6 batteries with max 1 x 240mm ² per battery			
bottom optn/	Shared all Power SLOT enclosures	Max 10 x 240mm ² for the battery			
bottom entry	Shared 2 Power SLOT enclosures	Up to 3 batteries with max 2 x 240mm ² each group			
	Shared 3 Power SLOT enclosures	Up to 2 batteries with max 4 x 240mm ² each group			
	Distributed	Up to 6 batteries with max 1 x 240mm ² per battery			
top optra	Shared all Power SLOT enclosures	Max 8 x 240mm ² for the battery			
top entry	Shared 2 Power SLOT enclosures	Up to 3 batteries with max 2 x 240mm ² each group			
	Shared 3 Power SLOT enclosures	Up to 2 batteries with max 4 x 240mm ² each group			

- 7. Applicable to separate inputs by respecting the installation rules regarding cables lengths. The bypass protection is given as a recommendation (trip curves setting and distribution sizing shall be defined according to the rated load current and the UPS overload capability). The protection shall be settable according the number of installed power blocks, its setting range shall be from 0.4 to 1 x rated current. When the bypass and rectifier inputs are combined (common input), the general input protection rating must be at least equivalent to the highest between Ax and Bx (bypass or rectifier).
- 8. Selectivity of distribution after the UPS with inverter short-circuit current (short-circuit with AUX MAINS not present). This must be selective with residual current circuit breakers connected downstream of the UPS.
- 9. Average Peak Current
- 10. Based on 90° HO7 RN or R2V cable type; for other please consult us
- 11. Neutral is not required at the rectifier input. If however distributed, consult us to ensure it is allowed by installation standards.
- 12. On demand, the Unit can supply a 3 wires distribution (without input and output neutral).



# 4. REFERENCE STANDARDS AND DIRECTIVES

## 4.1 OVERVIEW

The equipment, installed, used and serviced in accordance with its intended use, its regulations and standards, its manufacturer instructions and rules, is in compliance with the relevant Union harmonization legislation:

#### LVD 2014 / 35 / EU

DIRECTIVE 2014/35/EU OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of 26 February 2014, on the harmonization of the laws of the Member States relating to the making available on the market of electrical equipment designed for use within certain voltage limits.

#### EMC 2014 / 30 / EU

DIRECTIVE 2014/30/EU OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of 26 February 2014, on the harmonization of the laws of the Member States relating to electromagnetic compatibility.

#### RoHS 2011/65/EU

Directive 2011/65 of the European parliament and of the council of 8 June 2011 on the restriction of the use of certain hazardous substances in electrical and electronic equipment

#### 4.2 STANDARDS

#### 4.2.1 SAFETY

EN 62040-1 Uninterruptible Power System (UPS) - Part 1: General and safety requirements

IEC 62040-1 Uninterruptible Power System (UPS) - Part 1: Safety requirements (CB scheme by TÜV)

#### 4.2.2 ELECTROMAGNETIC COMPATIBILITY

- EN 62040-2 Uninterruptible Power System (UPS) Part 2: Electromagnetic compatibility (EMC) requirements (tested and verified by LCIE BUREAU VERITAS)
- IEC 62040-2 Uninterruptible Power System (UPS) Part 2: Electromagnetic compatibility (EMC) requirements (tested and verified by LCIE BUREAU VERITAS)

#### 4.2.3 TEST AND PERFORMANCE

EN 62040-3 Uninterruptible Power System (UPS) - Part 3: Method of specifying the performance and test requirements (tested and verified by TÜV)

#### 4.2.4 ENVIRONMENTAL

IEC 62040-4 Uninterruptible Power System (UPS) - Part 4: Environmental aspects - Requirements and reporting

## 4.3 SYSTEM AND INSTALLATION GUIDELINES

When carrying out electrical installation, all the above standards must be observed. All national and international standards (e.g. IEC60364) applicable to the specific electrical installation including batteries must be observed. For further information, refer to 'Technical specifications' chapter in the user manual.



ELITE UPS: a mark of efficiency

Socomec, as CEMEP UPS manufacturer member, has signed a Code of Conduct put forward by the Joint Research Centre of the European Commission (JRC), to ensure the protection of critical applications and processes ensuring 24/7 continuous high quality supply. The JRC commits to mitigating energy losses and gas emissions caused by UPS equipment, therefore maximising UPS efficiency.





# EMergency CPSS 2 to 200 kVA





Socomec Resource Center To download, brochures, catalogues and technical manuals



# **OBJECTIVES**

The aim of these specifications is to provide:

- the information required to choose the right uninterruptible power supply for a specific application.
- the information required to prepare the system and installation site.

The specifications are intended for:

- installation engineers.
- design engineers.
- engineering consultants.

# INSTALLATION REQUIREMENTS AND PROTECTION

Connection to the mains power supply and to the load(s) must be made using cables of suitable size, in accordance with current standards. If not already present, an electrical control station which can isolate the network upstream of the UPS must be installed. This electrical control station must be equipped with a circuit breaker (or two, if there is a separate bypass line) of an appropriate rating for the power drawn at full load.

If an external manual bypass is required, only the model supplied by the manufacturer must be installed.

We recommend fitting two metres of unanchored flexible cable between the UPS output terminals and the cable anchor (wall or cabinet). This makes it possible to move and service the UPS.

For detailed information, see the installation and operating manual.



# **1. ARCHITECTURE**

# 1.1 RANGE

The EMergency CPSS range has been designed to protect the power supply of safety systems. All our EMergency products are compliant with standard EN 50171:2001.

The EMergency CPSS products are designed to power emergency escape lighting in the event of normal supply failure. Depending on the local legislation, it may be suitable for powering other essential safety equipment, for example:

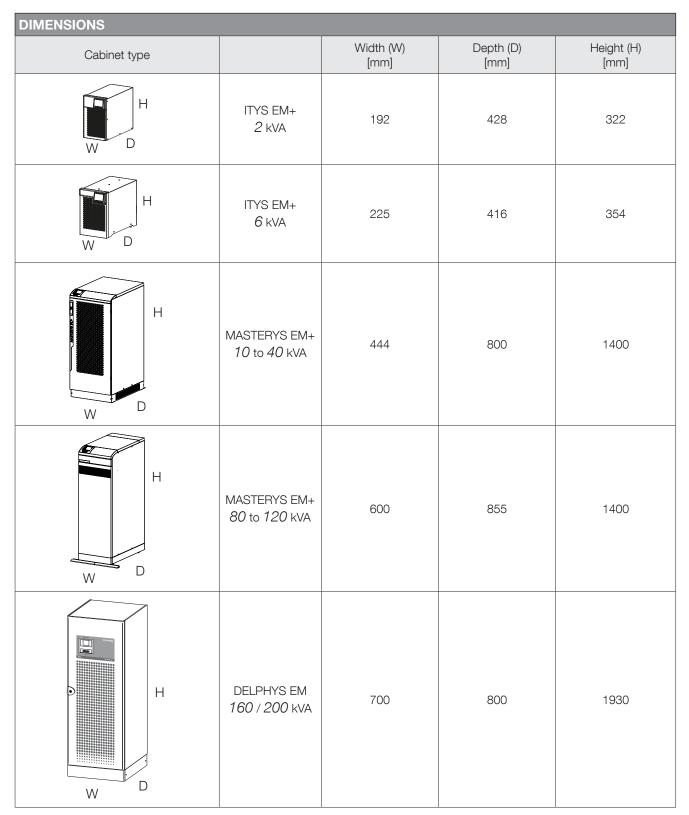
- electric circuits of automatic fire extinguishing installations;
- paging systems and signalling safety installations;
- smoke extraction equipment;
- carbon monoxide warning systems;
- special safety installations related to specific buildings, e.g. high-risk areas.

CPSS Emergency EM from 2 to 200 kVA

- Designed and manufactured in compliance with standard EN 50171:2001.
- Ensures the power supply to emergency lighting, safety signalling lighting and anti-panic systems.

MOD	MODELS ⁽¹⁾⁽²⁾												
Rated power (kVA)		2	6	10	15	20	25	30	40	80	120	160	200
	ITYS 1/1	٠	•	-	-	-	-	-	-	-	-	-	-
	MASTERYS 3/1	-	-	•	•	-	-	-	-	-	-	-	-
EM+	MASTERYS 3/3	-	-	•	•	•	•	•	•	•	•	-	-
	DELPHYS 3/3	-	-	-	-	-	-	-	-	-	-	•	•

Matrix table for model and kVA power rating.


(1) Check the product availability for your country. (2) Products can be adapted to application and site specifications.

Each range has been specifically designed to meet the demands of loads in specific application contexts, in order to optimise the features of the product and to facilitate its integration within the system.



# 2. FLEXIBILITY

# 2.1 POWER RATINGS FROM 2 TO 200 KVA



The equipment has been designed with a minimum direct and indirect footprint (the actual space occupied by the unit and the space required around it for maintenance, ventilation and access to the operating mechanisms and communication devices).

The careful design also provides easy access for maintenance and installation.

All of the control mechanisms and communication interfaces are located in the upper front section and can be accessed from the metal door.

The air inlet is at the front, with outflow from the top/rear only; this means other equipment or external battery enclosures can be placed alongside the UPS unit.



# **3. STANDARD AND OPTIONS**

# 3.1 EMERGENCY CPSS EM FROM 2 TO 200 KVA

The wide range is suitable for all standard requirements.

For non-standard requests, our team of experts is available to adapt products to your needs.

#### Features

- IP20 metal enclosure compliant with EN 60598-1.
- Battery charging: 80% in 12 h.
- Battery protection against damage due to polarity inversion.
- Battery protection against considerable discharge.
- Battery with 10-year life expectancy⁽¹⁾.
- Designed to withstand 120% of the nominal charge during the entire back-up period.
- Specific remote contacts and notifications.

#### Options

- Connection to downstream IT system.
- Eco mode to reach up to 98% efficiency.
- Other types of battery available.

(1) not for ITYS EM+ 2 kVA (LPS system).





# 4. SPECIFICATIONS

# 4.1 ITYS EM+

#### 4.1.1 INSTALLATION PARAMETERS

INSTALLATION PARAMETERS					
Sn - rated power (kVA)		2	6		
Pn - active power (kW)		2	6		
Pn according to EN 50171:2001 (kW)		1.5	5		
Max withstand power according to EN 50171:2001 (kW	/)	2	6		
Phase in/out		1/1			
Rated/maximum rectifier input current (EN 62040-3) (A)	9/16	28/42			
Inverter output current @ 230 V (A) P/N		8.7	26		
Maximum air flow (m³/h)		192	230		
Sound level (dBA)		< 50			
	W	135	326		
Dissipation at rated load (minimum mains power pre- sent and battery charging)	kcal/h	116	280		
	BTU/h	461	1112		
Dimensions (W x D x H) (mm)		192 x 428 x 322	225 x 416 x 354		
Maximum weight (kg)		11	13.5		

# 4.1.2 ELECTRICAL CHARACTERISTICS

INSTALLATION PARAMETERS				
Rated power (kVA)	2	6		
Phase in/out	1	/1		
Rated mains supply voltage	230 V (	(1ph+N)		
	160 V to 300 V	160 V to 276 V		
Voltage tolerance (ensuring battery recharge)	(up to 110 V with load linear decrease from 100% 1 50% Pn)			
Rated frequency	50/60 Hz	(selectable)		
Frequency tolerance	±2	2%		
Power factor (input at full load and rated voltage)	≥ 0	.995		
Total harmonic distortion (THDi)	< 5%	< 3%		
Max inrush current at start-up	< 8	x In		



ELECTRICAL CHARACTERISTICS - BYPASS			
Rated power (kVA)	2	6	
Bypass frequency variation speed	1 Hz/s	- 3 Hz/s	
Bypass rated voltage	187-2	264 V	
Bypass rated frequency (selectable)	50/60 Hz (selectable)		
Bypass frequency tolerance	±10% (configurabl	e from 1% to 10%)	

ELECTRICAL CHARACTERISTICS - INVERTER		
Rated power (kVA)	2	6
Rated output voltage (selectable)	220/23	0/240 V
Output voltage tolerance	Static	:±1%
Rated output frequency (selectable)	50/60 Hz (	(selectable)
Output frequency tolerance	±0.1% (on mair	ns power failure)
Load crest factor	<	3:1
Total voltage distortion	< 1% on	linear load
Overload tolerated by the inverter	110% x 5 min,	, 130% x 5 sec

ELECTRICAL CHARACTERISTICS - EFFICIENCY		
Rated power (kVA)	2	6
Double conversion efficiency (normal mode - @ full load)	up to 93%	up to 95%
Efficiency in Eco Mode	up to 97%	up to 98%

ELECTRICAL CHARACTERISTICS - ENVIRONMENT					
Rated power (kVA)	2	6			
Storage temperatures	-5 to +50 °C (23 to 122 °F) (15	5 to 25 °C for better battery life)			
Working temperature	0 to +40 °C (32 to 104 °F) (15 to 25 °C for better battery I				
Maximum relative humidity (non-condensing)	95%				
Maximum altitude without derating	1000 m	(3300 ft)			
Degree of protection	IP	20			
Portability	ISTA 1H P-164000664				
Colour	RAL 7016	6 textured			



### 4.1.3 RECOMMENDED PROTECTION

Output terminals

RECOMMENDED PROTECTION - RECTIFIER		
Rated power (kVA)	2	6
Circuit breaker (A)	20 C curve	63 D curve
RECOMMENDED PROTECTION - INPUT RESIDUAL C	CURRENT CIRCUIT BRE	AKER
Rated power (kVA)	2	6
Input residual current circuit breaker	0.03 A Sele	ctive Type A
<b>RECOMMENDED PROTECTION - OUTPUT</b>		
Rated power (kVA)	2	6
B curve circuit breaker (A)	4	6
CABLES - MAXIMUM CABLE SECTION		
Rated power (kVA)	2	6
Rectifier terminals	IEC 320-C20	
Bypass terminals	-	16 mm ²
Battery terminals	Connector	
		1

8x IEC 320-C13



### 4.2.1 INSTALLATION PARAMETERS

INSTALL	ATION PA	RAME	TERS									
Sn - rated p	oower (kVA)		10	15	10	15	20	25	30	40	80	120
Pn - active power (kW)		10	15	10	15	20	25	27	36	72	108	
Pn accordir EN50171:2			10	15	10	15	20	25	27	36	72	108
	and power (ł o EN 50171		12	18	12	18	24	30	32.4	43.2	86.4	129.6
Phase in/ou	ut		3,	/1				3,	/3			
Rated/maximum rectifier input current (EN 62040-3) (A)		15/28	23/37	15/28	23/37	31/45	39/55	42/55	56/73	111/146	166/219	
Rated bypass input current (A)		48	72	16	24	32	40	48	64	128	191	
Inverter output current @ 230 V (A) P/N		@ 230	43	65	14	22	29	37	43	58	115	174
Maximum air flow m ³ /h					360	720	1080					
Sound leve	l @70% Pn	dBA			≤ 49	≤ 53	≤ 55					
		W	440	665	440	665	905	1135	1270	1776	3550	5325
Power dissi nominal cor		kcal/h	378	572	378	572	778	976	1092	1526	3052	4579
		BTU/h	1501	2269	1501	2269	3088	3875	4335	6060	12120	18180
Power dissi	ination	W	490	750	490	750	1050	1315	1420	1930	3860	5790
(max) in the		kcal/h	421	645	421	645	903	1130	1221	1660	3319	4979
conditions		BTU/h	1672	2559	1672	2559	3582	4490	4848	6950	13179	19768
Dimensions	$(W \times D \times H)$	mm				444 x 80	0 x 1400				600 x 85	5 x 1400
Single unit	Opertional	mm					Rear	≥ 200				
clearances	Maintenance	mm				Fr	ront ≥150	0 top ≥ 80	00			
Weight (without battery) kg				89					95	186	240	
Weight with internal battery (2/3/4/5 shelf) kg				333 /	430 / 527	/ 624				-		

# 4.2.2 ELECTRICAL CHARACTERISTICS

Socomec

ELECTRICAL CHARACTERISTICS - INPUT											
Rated power (kVA)	10	15	10	15	20	25	30	40	80	120	
Phase in/out	3/1 3/3										
Rated mains supply voltage		400 V (3ph + N)									
Voltage tolerance (ensuring battery recharge)		-15% +20% (output load at power factor 1) -20%+20% (output load at power factor 0.9) (up to -40% @70% of nominal active load (linear decrease)									
Rated frequency	50/60 Hz (selectable)										
Frequency tolerance					45 ÷ (	66 Hz					
Power factor (input at full load and rated voltage)					≥0	.99					
Total harmonic distortion (THDi)	< 3%	< 2.5%	< 3%	< 2	.5%			< 2%			
Max inrush current at start-up					< In (no ov	vercurrent	)				
Power walk-in (from battery to normal mode		4 seconds (settable parameters)									



ELECTRICAL CHARACTERISTIC	ELECTRICAL CHARACTERISTICS - BYPASS										
Rated power (kVA)	10	15	10	15	20	25	30	40	80	120	
Phase in/out	3/1 3/3										
Bypass frequency variation speed	1 Hz/s - 3 Hz/s										
Bypass rated voltage				Nomir	nal outpu	t voltage	±15%				
Bypass rated frequency (selectable)	50/60 Hz (selectable)										
Bypass frequency tolerance	$\pm 2\%$ (from $\pm 1\%$ to $\pm 8\%$ (operation with generator unit))										

ELECTRICAL CHARACT	ELECTRICAL CHARACTERISTICS - INVERTER											
Rated power (kVA)		10	15	10	15	20	25	30	40	80	120	
Phase in/out		3/	3/1 3/3									
Rated output voltage (selecta	ıble)					220/23	0/240 V					
Output voltage tolerance		Static: ±1% Dynamic: VFI-SS-111 (EN62040-3) compliant										
Rated output frequency (sele	ctable)	50/60 Hz (selectable)										
Output frequency tolerance		±0.01% (on mains power failure)										
Load crest factor		≥ 2.7										
Voltage harmonic distortion		< 1% on linear load										
Overload tolerated by the	10 min	12.5	18.7	12.5	18.7	25	31.2	33.7	45	90	135	
inverter kW	1 min	15	22.5	15	22.5	30	37.5	40.5	54	108	162	

ELECTRICAL CHARACTERISTICS - EFFICIENCY										
Rated power (kVA)	10	15	10	15	20	25	30	40	80	120
Phase in/out	3/1 3/3									
Double conversion efficiency @ full load (normal mode)	up to 96.2 %									
Efficiency in Eco Mode					≤ 99	0.4%				

ELECTRICAL CHARACTERISTICS - ENVIRONMENT										
Rated power (kVA)	10 15 10 15 20 25 30 40 80 120								120	
Phase in/out	3/1 3/3									
Storage temperatures	-5 to +50 °C (23 to 113 °F) (15 to 25 °C for better battery life)									
Working temperature	0 to +40 °C ⁽¹⁾ (32 to 104 °F)         0 to +35 °C ⁽¹⁾ (32 to 95 °F)           (15 to 25 °C for better battery life)         (15 to 25 °C for better battery life)           Max +50°C (122°F) @ 70% Sn         Max +45°C (113°F) @ 70% Sn						tery life)			
Maximum relative humidity (non-condensing)	95%									
Maximum altitude without derating	1000 m (3300 ft)									
Degree of protection	IP20 (IP21 optional)									
Colour					RAL	7016				

ELECTRICAL CHARACTERISTICS - BATTERY										
Rated power (kVA)	10	15	10	15	20	25	30	40	80	120
Phase in/out	3,	3/1 3/3								
Maximum recharge current/with optional extra charger (A)		5/10			10		20	32		

(1) Conditions apply.



#### 4.2.3 RECOMMENDED PROTECTION

RECOMMENDED P	ROTECTION	DEVIC	ES - RE	CTIFIE	<b>R</b> ⁽¹⁾						
Rated power (kVA)		10	15	10	15	20	25	30	40	80	120
Phase in/out		3,	/1					3/3			
C curve circuit breaker (	(A)	32	40	32	40	63	63	63	80	160	250
gG fuse (A)		32	40	32	40	63	63	63	80	160	250
RECOMMENDED P	ROTECTION	DEVIC	ES - GE	ENERAL	BYPA	SS ⁽¹⁾		·	-		
Rated power (kVA)		10	15	10	15	20	25	30	40	80	120
Phase in/out		3,	/1				3,	/3			
Maximum I ² t supported (kA ² s)	by the bypass	1	6		8			15		120	400
Max lpk supported by th	he bypass (kA)	2	.4		1.2			1.7		5	9
C curve circuit breaker (	(A)	63	100	25	32	40	63	63	80	200	250
gG fuse (A)		63	100	25	32	40	63	63	80	200	250
RECOMMENDED P	ROTECTION	DEVIC	ES - IN	PUT RE	SIDUA	L CURF	RENT CI	RCUIT	BREAK	(ER ⁽²⁾	
Rated power (kVA)		10	15	10	15	20	25	30	40	80	120
Phase in/out		3,	/1				3,	/3			
Input residual current ci	rcuit breaker				> 0	.5 A Sele	ective typ	eВ			
RECOMMENDED P	ROTECTION	DEVIC	ES - Ol	JTPUT ⁽³	3)						
Rated power (kVA)		10	15	10	15	20	25	30	40	80	120
Phase in/out		3,	3/1				3/3				
Short-circuit inverter	0 to 40 ms	120	177	40	59	79	98	106	141	282	423
current (A) (when AUX MAINS is not present)	40 to 100 ms	99	147	33	49	66	82	88	117	236	351
C curve circuit breaker ⁽³	) (A)	8	13	3	4	6	6	8	10	20	32
B curve circuit breaker	) (A)	16	25	6	8	10	13	16	20	40	63
CABLES - MAXIMU	IM CABLE SE	ECTION									
Rated power (kVA)		10	15	10	15	20	25	30	40	80	120
Phase in/out		3,	/1				3/	/3			
Rectifier terminals				25			50			70	2x120
Bypass terminals				50			50			70	2x120
Battery terminals				25			50			70	2x120
Output terminals		5	0	50 25			50 70			2x120	

(1) Hectilier protection should only be considered in the event of separate inputs. The bypass protection is given by recommendation. When the bypass and rectifier inputs are combined (common input), the general input protection rating must be the highest of the two (bypass or rectifier).

(2) Must be selective with residual current circuit breakers downstream of the UPS connected to the UPS output. If the bypass network is separate from the rectifier circuit, or in the event of parallel UPS arrangements, use a single residual current circuit breaker upstream of the UPS.

(3) Selectivity of distribution after the UPS with inverter short-circuit current (short-circuit with AUX MAINS not present). The rating of the protection can be increased by "n" times downstream of a parallel UPS system, with "n" equal to the number of parallel modules.



### 4.3.1 INSTALLATION PARAMETERS

INSTALLATION PARAMET	TERS				
Rated power (kVA)			160	200	
Phase in/out			3	3/3	
Active power (kW)			144	180	
Pn according to EN 50171			120	150	
Rated/maximum rectifier input c	urrent (A)		220/290	278/340	
Rated bypass input current (A)			232	290	
Inverter output current @ 400 V	(A) P/N		232	290	
Maximum air flow (m³/h)			2250		
Sound level (dBA)			< 68		
		W	9200	11500	
Power dissipation in nominal col	nditions ⁽¹⁾	kcal/h	7911	9888	
		BTU/h	31391	39239	
		W	10600	13300	
Power dissipation (max) in the w conditions ⁽²⁾	vorst	kcal/h	9114	11436	
		BTU/h	36168	45380	
	Width	mm	7	700	
Dimensions	Depth	mm	8	300	
	Height	mm	1!	930	
Weight		kg	480	500	

(1) Considering nominal input current (400 V, battery charged) and rated output active power (PF 0.9).

(2) Considering maximum input current (low input voltage, battery recharge) and rated output active power (PF 0.9).

### 4.3.2 ELECTRICAL CHARACTERISTICS

ELECTRICAL CHARACTERISTICS - RECTIFIER ⁽¹⁾ INPUT							
Rated power (kVA)	160 200						
Rated mains supply voltage	400 V 3ph						
Voltage tolerance	240 to 480 V ⁽²⁾						
Rated frequency	50/60 Hz (selectable)						
Frequency tolerance	±1	0%					
Power factor (input at full load and rated voltage)	≥C	.99					
Total harmonic distortion (THDi)	< 3%						
Max inrush current at start-up	sh current at start-up <in (no="" overcurrent)<="" td=""></in>						

(1) IGBT rectifier. (2) Conditions apply.



ELECTRICAL CHARACTERISTICS - BYPASS							
Rated power (kVA)	160	200					
Bypass frequency variation speed	1.5 Hz/s (settable up to 3 Hz/s)						
Bypass rated voltage	Nominal outpu	t voltage ±15%					
Bypass rated frequency	50/60 Hz (selectable)						
Bypass frequency tolerance	from $\pm 1\%$ to $\pm 8\%$ (operation with generator unit)						

ELECTRICAL CHARACTERISTICS - INVERTER							
Rated power (kVA)		160	200				
Rated output voltage (selectable)		380/40	00/415 V				
Output voltage tolerance			:: ±1% SS-111 compliant				
Rated output frequency (selectable)		50/60 Hz (selectable)					
Output frequency tolerance		±0.01% on ma	$\pm 0.01\%$ on mains power failure				
Load crest factor		3	3:1				
Voltage harmonic distortion		< 1.5% wit	h linear load				
	1 min	225 kW	270 kW				
Overload tolerated by the inverter - 25 °C	10 min	180 kW	225 kW				

ELECTRICAL CHARACTERISTICS - EFFICIENCY		
Rated power (kVA)	160	200
Double conversion efficiency (normal mode) - full load	up to	94%

ELECTRICAL CHARACTERISTICS - ENVIRONMENT							
Rated power (kVA)	160 200						
Storage temperatures	-5 to +45 °C (23 to 113 °F) (15 to 25 °C for better battery life)						
Working temperature	0 to +40 ⁽¹⁾ °C (32 to 104 °F) (15 to 25 °C for better battery life)						
Maximum relative humidity (non-condensing)	95%						
Maximum altitude without derating	1000 m	(3300 ft)					
Degree of protection	IP20						
Colour	RAL 7012, silver grey frontal door						

(1) Conditions apply.



#### 4.3.3 RECOMMENDED PROTECTION

RECOMMENDED PROTECTION DEVICES - RECTIFIER ⁽¹⁾								
Rated power (kVA)		160	200					
D curve circuit breaker (A)		315	400					
gG fuse (A)		315	400					
RECOMMENDED PROTECTION DEVICES - GENERAL BYPASS ⁽¹⁾								
Rated power (kVA)		160	200					
Semiconductor	l²t (A²s)	320	0000					
characteristics	ls/c (A peak)	8000						
D curve circuit breaker (A)		400						
gG fuse (A)		400						
RECOMMENDED PROTECTION DEVICES - INPUT RESIDUAL CURRENT CIRCUIT BREAKER ⁽²⁾								
Rated power (kVA)		160	200					
Input residual current circuit breaker		3 A						

RECOMMENDED PROTECTION DEVICES - OUTPUT ⁽³⁾							
Rated power (kVA)	160	200					
hort-circuit inverter current (A) - (0 to 100 ms) hen AUX MAINS is not present)							
C curve circuit breaker ⁽³⁾ (A)	C curve circuit breaker ⁽³⁾ (A) $\leq 63$ A						
B curve circuit breaker ⁽³⁾ (A)	cuit breaker ⁽³⁾ (A) $\leq 125$ A						
High-speed fuse ⁽³⁾ (A) $\leq 160$ A							

CABLE CONNECTION - MAXIMUM CAPABILITY PER POLE							
Rated power (kVA) 160 200							
Rectifier terminals	2 x 150 mm ²						
Bypass terminals	2 x 15	0 mm ²					
Battery terminals	2 x 240 mm ²						
Output terminals 2 x 150 mm ²							

(1) Rectifier protection should only be considered in the event of separate inputs. The bypass protection is given by recommendation. When the bypass and rectifier inputs are combined (common input), the general input protection rating must be the highest of the two (bypass or rectifier).

(2) Must be selective with residual current circuit breakers downstream of the UPS connected to the UPS output. If the bypass network is separate from the rectifier circuit, or in the event of parallel UPS arrangements, use a single residual current circuit breaker upstream of the UPS.

(3) Selectivity of distribution after the UPS with inverter short-circuit current (short-circuit with AUX MAINS not present). The rating of the protection can be increased by "n" times downstream of a parallel UPS system, with "n" equal to the number of parallel modules.



# **5. REFERENCE STANDARDS AND DIRECTIVES**

# 5.1 OVERVIEW

The construction of the equipment and choice of materials and components comply with all laws, decrees, directives and standards currently in force.

In particular, the equipment is fully compliant with all European Directives concerning CE marking.

#### LVD 2014/35/EU

Directive of the European Parliament and council of 26 February 2014 on the harmonisation of the laws of Member States on making electrical equipment designed for use within certain voltage limits available on the market.

#### EMC 2014/30/EU

Directive of the European Parliament and council of 26 February 2014 on the harmonisation of the laws of Member States on electromagnetic compatibility.

#### RoHS 2011/65/EU

Directive 2011/65 of the European parliament and council of 8 June 2011 on restricting of the use of certain hazardous substances in electrical and electronic equipment

# **5.2 STANDARDS**

#### 5.2.1 CPSS

EN 50171:2001 General requirements for central power supply systems for an independent energy supply to essential safety equipment

#### 5.2.2 SAFETY

EN 62040-1 Uninterruptible Power System (UPS) - Part 1: General and safety requirements (certified by TÜV SÜD) IEC 62040-1 Uninterruptible Power System (UPS) - Part 1: Safety requirements

#### 5.2.3 ELECTROMAGNETIC COMPATIBILITY

EN 62040-2 Uninterruptible Power System (UPS) - Part 2: Electromagnetic compatibility (EMC) requirements (C3 category) (tested and verified by third party)

IEC 62040-2 Uninterruptible Power System (UPS) - Part 2: Electromagnetic compatibility (EMC) requirements

EN 60529 Degrees of protection provided by enclosures

## **5.3 SYSTEM AND INSTALLATION GUIDELINES**

When carrying out electrical installation, all of the above standards must be observed. All national and international standards (e.g IEC60364) applicable to the specific electrical installation including batteries must be observed. For further information refer to the 'Technical specifications' chapter in the user manual.



# ELITE UPS: a mark of efficiency

Socomec, as CEMEP UPS manufacturer member, has signed a Code of Conduct put forward by the Joint Research Centre of the European Commission (JRC), to ensure the protection of critical applications and processes ensuring 24/7 continuous high quality supply. The JRC commits to mitigating energy losses and gas emissions caused by UPS equipment, therefore maximising UPS efficiency.













Socomec Resource Center To download, brochures, catalogues and technical manuals



DIMENSIONS					
	Model	Width [mm]	Depth [mm]	Height [mm]	Weight [kg]
	16 A		285	44 (1U)	4
	32 A	440 (19")	360	88 (2U)	6

CONNECTIONS					
			Model	INPUT	OUTPUT
			16 A	2x IEC C20 (16 A)	1x IEC C19 (16 A) 8x IEC C13 (10 A)
	0		32 A	Terminal 1 x 6P (10 mm²)	2x IEC C19 (16 A) 16x IEC C13 (10 A)



ELECTRICAL CHARACTERISTICS	16 A	32 A			
Rated mains supply voltage	200 / 208 / 22	0 / 230 / 240 V	ŝ		
Input voltage range	150 Vac te	o 300 Vac	SX SX		
RMS voltage tolerance	+/-10% (configurab	le +/-5% to +/-20%)	STATYS		
Rated Frequency	50/6	60 Hz			
Frequency tolerance	+/-10% (configurab	le +/-5% to +/-20%)			
Transfer time	ITIC co	mpliant			
Admitted overload	125% / 1 minutes, 150% / 30 seconds				

COMMUNICATION AND OPTIONS	16 A	32 A		
Display	LCD +	Display		
	Slot for optional co	mmunication board		
Standard communication features	5 dry contacts (Volt free) - Configurable			
	Setting port for c	configuration tool		
Options	SNMP communication board			
	RS485 Commu	unication board		

ELECTRICAL CHARACTERISTICS - ENVIRONMENT	16 A	32 A		
Storage conditions	-5 to 40 °C @ 0 to 90%	RH (non-condensing)		
Working temperature	-5 to +	-40 °C		
Working relative humidity	0 - 90% (non-condensing)			
Noise	< 25 dBA			
Conformity	CE cor	npliant		
Directives	2014/35/UE ; 2014/30/UE			
Standards	IEC60950-1 ; CEI/EN 62310-2			
Environmental	WEEE ; ROHS			



16 and 32A











Socomec Resource Center To download, brochures, catalogues and technical manuals



# **OBJECTIVES**

The aim of these specifications is to provide:

- the information required to choose the right Static Transfer System (STS) for a specific application.
- the information required to prepare the system and installation site.

The specifications are intended for:

- installation engineers.
- design engineers.
- engineering consultants.

# **INSTALLATION REQUIREMENTS AND PROTECTION**

Connection to the mains power supply and to the load(s) must be made using cables of suitable size, in accordance with current standards. If not already present, an electrical control station which can isolate the network upstream of the STATYS must be installed. This electrical control station must be equipped with a circuit breaker of an appropriate rating for the power draw at full load.

If an RCD is required a selective B-type should be used. It must be coordinate with residual current circuit breakers downstream of the STATYS connected to the STATYS output.

Potential dispersion of current from utilities downstream of the STS should be added to that discharged from the STATYS, and it should also be noted that current peaks are also reached, albeit very briefly, during transitory phases.

If an external manual bypass is required, only the model supplied by the manufacturer must be installed. For the Integrable Chassis version, STATYS is able to manage the PDU's switches (input/output/maintenances bypasses) in order to protect against users miss-operation.

For detailed information, see the installation and operating manual.



# **1. ARCHITECTURE**

# 1.1 RANGE

STATYS is a range of high performing STS designed to protect critical and sensitive appliances applications in the IT, telecom and industrial fields, such as enterprise servers, storage systems, networking equipment, telecommunications systems, diagnostic/medical devices and industrial applications.

Models															
	1-pha	-phase (A) 3-phase (A)													
	32	63	63	100	200	300	400	600	630	800	1000	1250	1400	1600	1800
19" RACK	•	•	•	•	-	-	-	-	-	-	-	-	-	-	-
Integrable Chassis (OEM)	-	-	-	-	•	•	•	•	•	•	•	•	•	•	•
Cabinet	-	-	-	-	•	•	•	•	•	•	•	•	•	•	-
Matrix table for model and A current rating															

Each range has been specifically designed to meet the demands of loads in specific application contexts, in order to optimise the features of the product and to facilitate its integration within the system.



# 2. FLEXIBILITY

# 2.1 CURRENTS FROM 32 TO 1800 A

Dimensions								
Model		Range	Width (mm)	Depth (mm)	Height (mm)			
1 phase		32/63 A	400 (10")	747(1)	89 (2U)			
	- 19" Rack	63/100 A	483 (19")	648(1)	400 (9U)			
		200 A	400					
		300/400 A	600	586	765			
	Integrable Chassis (OEM)	600/630 A	800					
		800/1000 A 1000		950(1)	1930			
3 phases		1250/1800 A	910	815	1955			
		200 A	500					
		300/400 A	700	600(1)	1930			
Ca	Cabinet	600/630 A	900					
		800/1000 A	1400	950(1)	1930			
		1250/1600 A	2010	815	1955			

(1) Depth does not include handles (+40 mm)

The equipment has been designed with a minimum direct and indirect footprint (the actual space occupied by the unit and the space required around it for maintenance, ventilation and access to the operating mechanisms and communication devices).

Please contact us for any other requirement.

## 2.2 NEUTRAL MANAGEMENT

STATYS is well adapted to all electrical environments.

For single-phase units, STATYS is available in 2-pole switching.

For three-phase units, it is available in 3 or 4-poles switching.

Built with fully rated thyristors, STATYS forces a short "make before break" neutral switching principle in order to keep the load reference and reduce the transfer time.

## 2.3 TRANSFORMER MANAGEMENT

In case of downstream transformer and asynchronous power, STATYS handles source switching which prevents untimely protection tripping, thanks to the ATSM system



# **3. STANDARD AND OPTIONS**

# 3.1 STANDARD INTERNAL REDUNDANT DESIGN

- Individual driver per SCR paths, with dedicated local power supplies,
- Redundant cooling with fan failure monitoring,
- Real-time SCR fault sensing,
- Separation of main functions to prevent internal fault propagation,
- Robust internal field communication bus,
- Internal monitoring of sensors to ensure maximum system reliability,
- 24/7/365 real-time remote monitoring.

# 3.2 OPTIONAL REDUNDANCY (IN STANDARD FOR STATYS ABOVE 800A)

- Redundant control system, using two microprocessor control boards,
- Redundant power supplies of the control boards,
- Dedicated Redundant power supplies for SCR driver boards

# 3.3 COMPACT DESIGN

- Small footprint and compact units,
- Adjacent or back to back mounting,
- Front access for easy maintenance procedures,
- Compact Hot Swap 19" rack system.

# **3.4 STANDARD FEATURES**

- Smart commutation system configurable according to the load.
- Synchronised and non-synchronised sources management (fully settable transfer modes).
- Fuse-free or fuse-protected design.
- Output fault management.
- Double maintenance bypass (rack and cabinet versions).
- Neutral oversizing for non-linear loads compatibility.

# **3.5 STANDARD COMMUNICATION FEATURES**

- Ethernet network connection (WEB interface, SNMP and e-mail).
- I/O dry contacts interfaces.
- Flexible Com Slots.
- LCD and 7" Color Touchsreen.
- Full digital configuration and setting.

# **3.6 ADITIONAL OPTIONS**

- Additional dry contacts interface board.
- MODBUS RTU.
- Profibus interface.
- Automatic maintenance bypass interlock.
- Voltage adaptation.

# 3.7 REMOTE MONITORING SERVICE

• SoLink, remote monitoring service that connects your UPS to your Critical Power specialist 24/7.



# 4. SPECIFICATIONS

# 4.1 INSTALLATION PARAMETERS

#### 1 phase:

Installation paramenters							
Model		32	63				
Phase in/out		1/1	1/1				
Rated power (A)		32	63				
Maximum current on n	eutral ⁽²⁾	32	63				
Crest factor		< 3	3.5				
Minimum air flow (m³/h	)	26					
Sound level (dBA)		< 45					
	(VV)	80	184				
Dissipation at rated	kcal/h	69	160				
	BTU/h	272	628				
	W (mm)	48	33				
Dimensions Rack	D (mm)	747					
	H (mm)	89					
Weight (kg)		2	6				

#### (1) Worst case:

- 4 pole switching
- cabinet version with internal input protection
- 4 wires
- no linear load
- (2) Contact us for higher neutral sizing

#### 3 phases:

Installation	nstallation paramenters														
Model			63	100	200	300	400	600	630	800	1000	1250	1400	1600	1800
Phase in/out			3/3 3/3		3/3	3/3	3/3	3/3	3/3	3/3	3/3	3/3	3/3	3/3	3/3
Rated power	• •		63	100	200	300	400	600	630	800	1000	1250	1400	1600	1800
Maximum cui neutral ⁽²⁾	rrent o	on	126	173	340	60	30	1000	1000	800	1000		1600		1800
Crest factor			< 3	3.5		< 3	3.5		< 3.3	< 2.1	< 1.7		< 7	1.7	
Minimum air f	low (r	m³/h)	6	0	553	64	12	627	627	19	50		30	00	
Sound level (	dBA)		< -	45	60	5	6	54	54	6	1		8	4	
Dissipation at		(VV)	340	540	1330	1690	2530	3730	3917	4272	5597	6705	7238	7905	
rated load(1)		kcal/h	293	464	1147	1457	2181	3216	3377	3674	4813	5765	6224	6797	-
CABINET or I	Rack	BTU/h	1160	1843	4538	5766	8632	12727	13364	14536	19042	22829	24647	26916	
Dissipation at		(VV)			1090	1430	1990	3020	3171	4133	5380	6705	7238	7905	8971
rated load ⁽¹⁾		kcal/h	-	-	940	1233	1716	2603	2734	3554	4626	5765	6224	6797	7714
OEM		BTU/h			3722	4883	6795	10308	10824	14074	18319	22829	24647	26916	30547
		W (mm)	48	33											
Dimensions F	Rack	D (mm)	64	18						-					
		H (mm)	40	00											
		W (mm)			400	60	00	80	00	10	00		91	10	
Dimensions C	DEM	D (mm)	-				586			99	95		8-	15	
		H (mm)					765			19	30		19	55	
		W (mm)			500	70	00	90	00	14	00		2010		
Dimensions CABINET D (mm)		-				600			99	95		815		-	
		H (mm) 1930							1955						
	Rack	<	5	8				-						-	
Weight (kg)	OEN	1	-	-	70	1(	05	10	30	30 495		570			
	Cabi	net	-		195	2	70	34	45	68	35		1200		-



# 4.2 ELECTRICAL CHARACTERISTICS

Electrical characteristics - Operating range								
Model	RACK 32 / 63 A RACK 63 / 100 A CABINET / OEI							
Rated mains supply voltage ⁽¹⁾	120 to 127 V / 220 to 240 V / 254 V (ph+N or ph+ph)		/ 380 to 415 V I or 3ph)					
RMS voltage tolerance		±10% (configurable)						
Tolerance to fast transients		±25% (configurable)						
Rated Frequency		50/60 Hz						
Frequency tolerance		±5% (configurable)						
Admitted Power Factor	no restriction							
Admitted overload	110% for 60 minutes, 150% for 2 minutes ⁽²⁾							

(1) Consult us for other voltage requirements.

(2) for 630A model only : 105% 60min 150% 1min

Electrical characteristics - Environment								
Model	RACK 32 / 63 A RACK 63 / 100 A CABINET / OEM							
Storage temperature		-25 to +70 °C (-13 to +158 °F)						
Working temperature	from 0 °C up to 4	0 °C (32 °F up to 104 °F) up to	50 °C with derating					
Maximum relative humidity (non-condensing)	95%							
Maximum altitude without derating		1000 m (3300 ft)						
Degree of protection	IP	30	IP20 (cabinet), IP20 C (OEM)					
Colour		Dark grey, door: light grey						
Performance	up to 99%							
Leakage current	<10 mA	<10 mA	<30 mA					



# **5. REFERENCE STANDARDS AND DIRECTIVES**

# 5.1 OVERVIEW

The equipment, installed, used and serviced in accordance with its intended use, its regulations and standards, its manufacturer instructions and rules, is in compliance with the relevant Union harmonisation legislation:

#### LVD 2014 / 35 / EU

DIRECTIVE 2014/35/EU OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of 26 February 2014, on the harmonisation of the laws of the Member States relating to the making available on the market of electrical equipment designed for use within certain voltage limits.

#### EMC 2014 / 30 / EU

DIRECTIVE 2014/30/EU OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of 26 February 2014, on the harmonisation of the laws of the Member States relating to electromagnetic compatibility.

#### RoHS 2011/65/EU

Directive 2011/65 of the European parliament and of the council of 8 June 2011 on the restriction of the use of certain hazardous substances in electrical and electronic equipment

### **5.2 STANDARDS**

#### 5.2.1 SAFETY

EN 62310-1 Static transfer systems (STS) – General and safety requirements

IEC 62310-1 Static transfer systems (STS) – General and safety requirements

#### 5.2.2 ELECTROMAGNETIC COMPATIBILITY

EN 62310-2 Static transfer systems (STS) – Electromagnetic compatibility (EMC) requirements IEC 62310-2 Static transfer systems (STS) – Electromagnetic compatibility (EMC) requirements

# 5.3 SYSTEM AND INSTALLATION GUIDELINES

When carrying out electrical installation, all the above standards must be observed. All national and international standards (e.g IEC60364) applicable to the specific electrical installation must be observed. For further information refer to 'Technical specifications' chapter in the user manual.





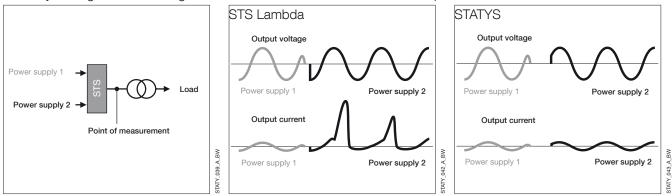




# GLOSSARY

## ACS

Automatic Cross Synchronisation (ACS) is an option which can be integrated into the machine without adding external enclosures and which synchronises the output voltage with an external source or with another stand-alone UPS (single or parallel system, Socomec or other brands).


# ADC

The Advanced Dry Contact (ADC) circuit board is an interface fitted with programmable dry contacts. It consists of up to four normally open or normally closed outputs and up to three digital inputs, all fully configurable. Up to four operating modes can be selected.

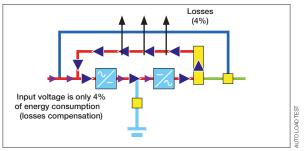
# ADVANCED TRANSFORMER SWITCHING MANAGEMENT (ATSM)

Advanced switching management of downstream transformers for static transfer systems.

If the upstream network has no distributed neutral cable, two upstream transformers or one downstream transformer can be added to create a neutral reference point at the output. For the downstream solution, STATYS (thanks to ATSM) correctly manages the switching to limit inrush current and avoid the risk of spurious breaks.



# ADICOM (ADVANCED INTERFACE)


- User-friendly graphic colour display: gives a clear view of the UPS subassemblies status and provides the user with a full array of controls for their management.
- USB connection with front access: for downloading or uploading of files from a memory key such as reports, custom language, software releases.
- LED status bar: gives the UPS status in 3 colours: green, yellow, or red.
- Easy procedures for start and shutdown of the UPS: the display gives operators a step-by-step explanation of the procedures.
- Wide range of network connections: extensive communication possibilities are on offer, including: HTML page for remote monitoring, SNMP agent sending TRAP to network management station, email sent according to events selection.
- Shutdown agent: allows sending a shutdown command to stand-alone or virtual servers.





# AUTO-LOAD TEST

Available for *Green Power 2.0* range, Auto-Load Test feature allows to perform a full power test to rectifier, inverter, bypass, contactors, chokes, capacitors, cables and fuses for validating the performance of the installed UPS with no customer load or dummy load connnected.

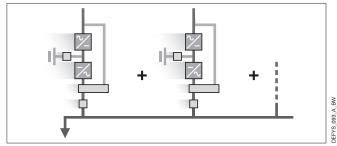


# AUTOMATIC RETRANSFER

In case of supply from the alternate sources, when the preferred source is restored, the STS must automatically retransfer the load back after a delay of 3 seconds.

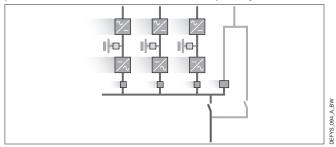
The system must try to retransfer to the preferred source in the best conditions.

For specific operating conditions, the automatic retransfer can be disabled via the user settings. In this case, the transfer has to be performed manually by the operator.


If the alternate source disappears before the manual retransfer, an automatic transfer must switch the load to the preferred source

Automatic retransfer must be activated by default and is configurable by the operator. This function can be delayed by the operator on each device in the case of multiple STS systems.

### **BYPASS**


#### Distributed architecture.

The simplest solution to ensure power supply availability and flexibility in case of unscheduled installation upgrades by means of the parallel configuration of the UPS units, each one incorporating its own bypass. This configuration enables power output to be increased and is suitable for N+1 redundancy. Upgrades can also be performed keeping the load supplied by the system.



#### Centralised architecture.

The ideal solution for system redundancy and planned power upgrades. The automatic and maintenance bypass functions are centralized. In the event of anomalies inside the UPS or of an overload, the power is automatically switched to bypass ensuring the maximum availability. This solution also allows to adapt the bypass size according to the real power and installation short-circuit capability.



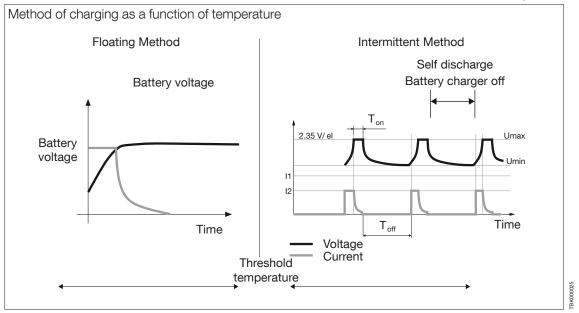


# Glossary Terms and accessories

### EBS

Expert Battery System (EBS) is a system which manages the battery charger. It responds to the working temperature to preserve battery life and reduce operating costs. Battery reliability depends on several variables: the working temperature, the installation environment, the number of charge and discharge cycles. Consequently it is important to introduce systems that can manage these variables in order to limit their impact on the UPS life cycle.

Premature ageing causes:


- corrosion: battery overcharge or high working temperature,
- sulfation: low charge voltage or long storage time,

• passivation: frequent charge/discharge cycles (cycling) resulting in capacity loss.

#### EBS allows for:

- automatic selection of the recharging method according to environmental and battery conditions,
- elimination of overloading due to permanent floating, which accelerates the corrosion of the positive plates,
- isolation of the battery from the DC bus, thanks to the charger function which is separate from the rectifier,
- protection against deep discharge,
- management of different types of batteries (sealed, open lead-acid and nickel-cadmium batteries),
- real-time calculation of the remaining back-up time,
- real-time measurements concerning the battery (voltage, battery current and battery capacity),
- a periodic battery test for monitoring battery efficiency and for programming preventive or corrective maintenance in the case of abnormal situations.

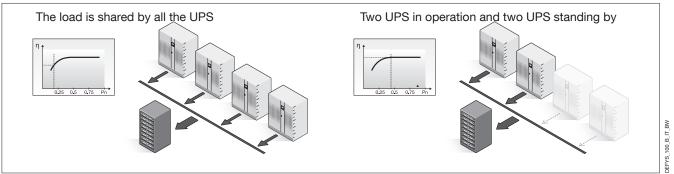
Tests carried out by Socomec on several brands of batteries, together with years of experience, show that battery life can be enhanced by up to 30% with the use of EBS compared to a traditional battery management system.





# ECOMODE

ECOMODE increases efficiency as under normal operating conditions the utility is supplied directly from the emergency supply via the automatic bypass. The static UPS system remains on standby to replace the supply in the event of a failure.


### EMD

Environment Module Device (EMD) is a device to be used in conjunction with NET VISION with the following features:

- temperature and humidity measurements + 2 contact alarms,
- can be managed remotely from 2 to 15 metres,
- alarm thresholds configurable via Web browser,
- notification of environmental alarm via e-mail and SNMP traps.

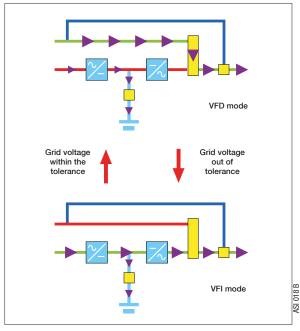
### **ENERGY SAVER**

- This function optimizes the efficiency  $(\eta)$  of your UPS in parallel when operating with a partial load.
- Only the UPS needed to supply the energy required by the applications are in operation.
- Redundancy can be ensured by maintaining an additional unit in operation.
- When the power consumed by the applications increases, the UPS units needed to meet the increased power requirements restart instantly.
- This type of operation is perfectly suited to applications subject to frequent variations in power.
- Energy Saver enables the increased efficiency of the whole system to be maintained.



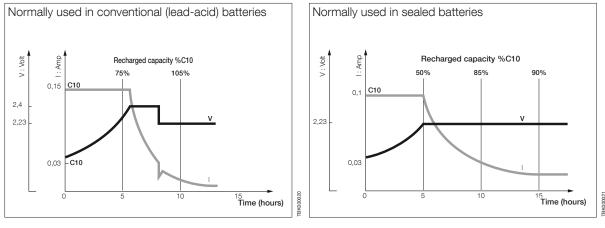


# FAST ECOMODE


Available as option for GREEN POWER 2.0 160 to 800 kVA/kW, FAST ECOMODE is an automatic operating mode that optimizes the efficiency depending on the quality of the input voltage.

When the input voltage is within the tolerance (value is settable), the load is supplied by the bypss (VFD mode) and the efficiency achived is 99%.

Ultra fast transfer time from bypass to inverter (2 ms) if the input voltage is out of tolerances and automatic transfer back to bypass when the input voltage is restored.


Batteries are permanently maintained under charging, avoiding periodic restarts of the rectifier

Available both for single and parallel units.



# FLOATING AND TWO-LEVEL CHARGE

Lead-acid, sealed and open-vented batteries are extremely sensitive to the temperatures in which they operate. Charge algorithms exist which reduce the effect of these temperatures. In addition to the EBS system, Socomec offers floating and "two-level" mixed charging. Its characteristics are illustrated below.





# **GRAPHIC TOUCH SCREEN**

The colour graphic touch screen, available on request, for DELPHYS MP ELITE and DELPHYS MX, is a user-friendly interface providing both safe operation of the UPS as well as a global system overview. The mimic diagram is interactive and intuitive and provides a quick overview of the whole equipment. Direct access through the mimic panel to the main functions such as the event log, graphic reports and the interactive help menu makes using the controls easier and safer. Remote monitoring is available via LAN connection, and the interface is included in the graphical touch screen.



### **GREEN POWER 2.0**



#### Energy Saving: high efficiency without compromise.

- Offers the highest efficiency in the market using VFI Double Conversion Mode, the only UPS working-mode that assures total load protection against all mains quality problems.
- Ultra high efficiency output independently tested and verified by an international certification organization in a wide range of load and voltage operating conditions, to have the value in the real site conditions.
- Ultra high efficiency in VFI mode is provided by an innovative topology (3-Level technology) that has been developed for all the Green Power UPS ranges.

#### Full-rated power: kW=kVA

• No power downgrading when supplying the latest generation of servers (leading or unity power factor).

DEFYS_182_A

- Real full power, according to IEC 62040: kW=kVA (unity power factor design) means 25% more active power available compared to legacy UPS.
- Suitable also for leading power factor loads down to 0.9 without apparent power derating.

#### Significant cost-saving (TCO)

- Maximum energy saving thanks to 96% efficiency in true double conversion mode: 50% saving on energy losses compared to legacy UPS gives significant savings in energy bill.
- UPS "self-paying" with energy saving.
- Energy Saver mode for global efficiency improvement on parallel systems.
- kW=kVA means maximum power available with the same UPS rating: no overdesign cost and therefore less €/kW.
- Upstream infrastructure cost optimization (sources and distribution), thanks to high performance IGBT rectifier.
- Extended battery life and performance:
  - long life battery,
  - very wide input voltage and frequency acceptance, without battery use.
- EBS (Expert Battery System) charging management improves battery service life.

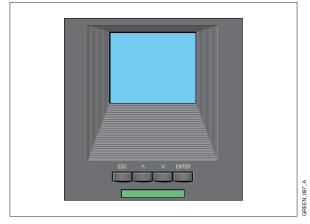


# HMI (HUMAN MACHINE INTERFACE)

HMI is a multilanguage Human Machine Interface available on MASTERYS GP which displays information regarding operating status, electrical measurements, allows the access to control functions and configuration parameters and provides a global overview of the system. It includes a colour graphic display and a luminous status bar, and provides access to:

- main functions via the mimic panel,
- measurements, alerts and UPS commands,
- programming battery tests and UPS operating modes,
- assisted startup and switching to maintenance bypass procedures,
- configuration menu,
- event log and alerts.

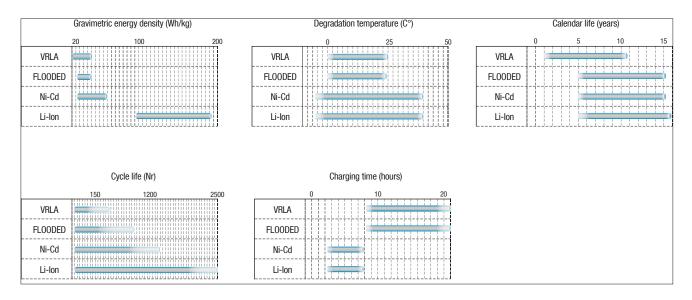



### JNC

The UPS back-up time might not always be long enough to cover the whole period of outage. In this case the best way to proceed is to save data and correctly shutdown the machines before the complete absence of the supply. The client is a small software application to be installed in the remote computers. It shows data and executes commands sent by Adicom or NetVision via the LAN network. Clients can be native for every single operating system (OS), or multi-OS and with more advanced features such as "JAVA & .NET Shutdown client" (JNC). The latter has been developed by Socomec on a JRE platform.



# LCD SYNOPTIC PANELS


LCD synoptic panels show all items of information relative to operating status, electrical measurements, gives access to control functions and configuration parameters such as input voltage out of tolerance, output voltage present, no mains power, battery circuit broken, battery maintenance voltage fault, battery output operational with mains power present, slow discharge pre-alarm, slow discharge protection alarm, battery charger fault, earth leakage fault (option).



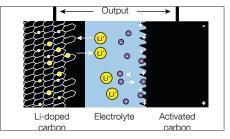
# LIB (LITHIUM-ION BATTERIES)

Recently introduced to batteries for UPS applications, lithium-ion technology clearly differs from conventional lead and nickelcadmium batteries. The most significant features include the considerable reduction in weight and floor space for the same runtime, the possibility of recharging them quickly, and their long cyclic and calendar lifetime.

However, their relatively brief history in highpower applications, and the need to introduce monitoring and equalisation electronics into batteries (which increases the initial cost), are still inhibiting on their widespread use.





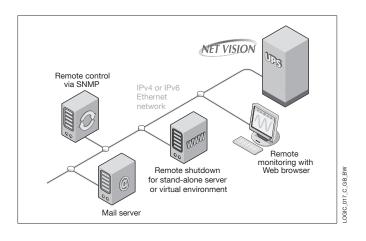

# LIC (LI-ION CAPACITOR)

LI-ION CAPACITOR UPS is the innovative UPS back-up storage solution specifically designed to protect:

- Applications requiring back-up times of a few seconds to several minutes.
- Processes sensitive to frequent micro interruptions.
- Applications working in critical environments where hazardous substances are not allowed.
- Applications with severe ambient conditions.

#### LITHIUM-ION CAPACITORS: OPERATING PRINCIPLE

- The activated carbon is a capacitor cathode
- The Li-doped carbon anode is a battery anode, undergoing Li doping during charge and de-doping during discharge
- Hybrid construction creates a capacitor which yields the best performance features of batteries and capacitors




# **NET VISION**

NET VISION is the most common Ethernet interface for use with Socomec products. It is a communication interface designed for business networks. The UPS behaves exactly like a networked peripheral, it can be managed remotely and allows the shutdown of server-based workstations.

NET VISION allows a direct interface between the UPS and Ethernet network avoiding dependence on the server. It is therefore compatible with all networks and multi-OS since it interacts via the Web browser.

- The main specifications and functions are as follows:
- 10 / 100 Mb Ethernet connection (RJ 45),
- UPS monitoring screen via a Web browser,
- remote shutdown of stand-alone server (compatible with JNC) or Virtual environnement (compatible with VIRTUAL-JNC),
- notification of faults via email to up to 8 addresses,
- UPS management via SNMP protocol,
- monitoring of the operating environment (optional EMD temperature and humidity sensor). Configurable alarm trigger, notification via email.



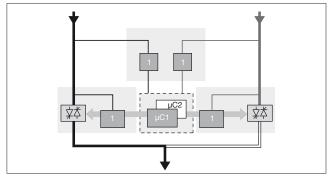


# "ON-THE-FLY" TRANSFER

In STS systems, the "on-the-fly" transfer mode is necessary to allow the operator to perform a synchronous transfer from the control panel when the two power sources are not permanently synchronous and the respective phases slowly diverge.

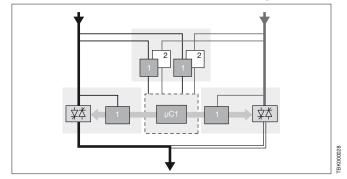
The "on-the-fly" transfer function must also be usable during automatic retransfer, to revert to the preferred source as soon as it is in better conditions than the alternative source.

The STS must transfer exactly when the source phase shift is below the preset tolerance window (which is adjustable).


# PARALLEL KIT

Parallel kits contain all of the components necessary for installing equipment units in parallel configurations. This can be anything from a cable to a cabinet, depending on the power and model of the UPS.

Contact Socomec for further details on the different solutions offered.


## REDUNDANT MICROPROCESSOR

In the case of mission-critical applications where system availability is fundamental, the equipment and all other components must be redundant intelligent. For the highest availability, even in the event of a control failure, the microprocessor can be redundant so that the system will not interrupt the power supply and full communication capacity will be maintained.

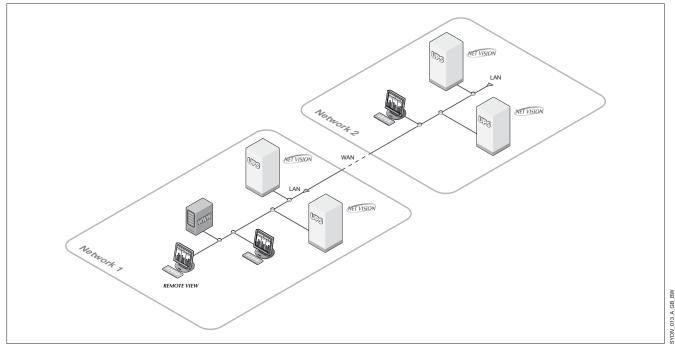


## REDUNDANT SUPPLY AND DUAL REDUNDANT SUPPLY

A Static Transfer System for "redundant supply" is a redundant electronic power supply connected to each source that powers the control boards. The term "dual redundant supply" indicates the presence of a second redundant power supply in addition to the first one described above. If one power supply control board should fail, it enables internal redundancy to be maintained even with a single power source.






# **REMOTE VIEW**

In addition to these protocols, another Socomec solution is REMOTE VIEW, a central monitoring programme for UPS systems over an Ethernet network, which is simpler and less expensive than the complex NMS platforms.

REMOTE VIEW is an application able to monitor simultaneously up to 1,024 devices equipped with NET VISION card or box through the Ethernet network. Users are provided with tree-view (hierarchy structure can have up to 8 levels) and list-view. When an alarm is triggered in one or other monitored UPS, (trap event), the icon that represents the UPS will change colour according to the severity level, sending an email to several addressees which have been set the programme configuration dialogue window.

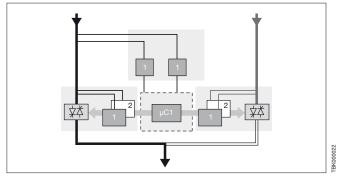
If the programme is running in the background, a pop-up message appears. Input and output voltages, battery capacity and load percentage are continuously monitored by the REMOTE VIEW programme. Plant supervisors and technicians can monitor all the UPS in the same programme window.

REMOTE VIEW runs on Windows[®] 2000/2003/2008 (R2)/XP/VISTA/7 with administrator rights. REMOTE VIEW software is available from the Socomec's website for free download.



# SVM - DIGITAL SPACE VECTOR MODULATION

The SVM, digital Space Vector Modulation, along with the isolation transformer installed on the inverter output, provides:

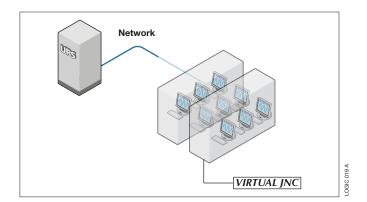

- perfectly sinusoidal output voltage THDV < 2% with linear loads and < 3% with non-linear loads,
- output voltage precision even when load is completely unbalanced between phases,
- an immediate response to major variations in load, without deviating the output voltage (± 2% in less than 5 ms),
- a very high short-circuit capacity up to 4 In (Ph / N) allows selectivity,
- a complete galvanic isolation between DC circuit and load output.
- SVM, the latest high performance components and IGBT power bridges enable the supply of:
- non-linear loads with high crest factor up to 3,
- active power without derating, for loads with a lagging power factor and up to 0.9 leading.



# SCR - INDEPENDENT CONTROL OF THE SILICON CONTROL RECTIFIER

Technology integrated in the Static Transfer System with individual, separate and autonomous control boards on each SCR path, increasing the redundancy and fault tolerance of each SCR path.

Physical separation between source 1 and source 2 SCRs prevents mutual disturbance.




### **VIRTUAL JNC**

Server virtualisation, which makes it possible to exploit the advantages of IT infrastructure consolidation, is becoming increasingly widespread. As a result, the correct management of virtual machines in the event of a fault with the electric power supply system is an increasingly common requirement. VIRTUAL JNC is the Socomec solution especially for virtual systems. It fully supports virtual machine shutdown, by acting on the physical server to correctly shutdown all virtual machines running on that server.

On Virtual Environment systems it is possible to manage the order of virtual machine shutdown (defining the shutdown as sequential or staggered)) and systems with more than one host (also in a cluster configuration), in a simple, efficient manner. VIRTUAL JNC is compatible with all Socomec UPS systems that support shutdown management via LAN. VIRTUAL JNC is compatible with VMware vCenterTM/vSphere, MicrosoftTM HYPER-V and Citrix XenServer.

VIRTUAL-JNC requires to be installed in a Windows® virtual machine. VIRTUAL-JNC software is available in the Socomec's web site for free download.



EN_glossary_001 Non contractual document. @ 2025, SOCOMEC SA. All rights reserved



Model : SOCOMEC Production : SOCOMEC Photography : Martin Bernhart and Studio Objectif Printing :

# Socomec: our innovations supporting your energy performance



- **Z** production sites
- France (x3)
- Italy (x2)
- Tunisia
- India
- China (x2)
  USA (x2)
- Canada

- 30 subsidiaries and commercial locations
  - Algeria 
     Australia 
     Austria 
     Belgium 
     China 
     Canada
  - Dubai (United Arab Emirates) 
     France 
     Germany
  - India Indonesia Italy Ivory Coast Malaysia
  - Netherlands Poland Portugal Romania Serbia
  - Singapore Slovenia South Africa Spain Sweden
  - Switzerland 
     Thailand 
     Tunisia 
     Turkey 
     UK 
     USA

#### 80 countries where our brand is distributed

in

**F** 

#### HEAD OFFICE

#### SOCOMEC GROUP

SAS SOCOMEC capital 10568020 € R.C.S. Strasbourg B 548 500 149 B.P. 60010 - 1, rue de Westhouse F-67235 Benfeld Cedex Tel. +33 3 88 57 41 41 - Fax +33 3 88 57 78 78 info.scp.isd@socomec.com





#### YOUR DISTRIBUTOR / PARTNER

